Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.150
Filtrar
1.
Mov Ecol ; 12(1): 49, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971747

RESUMO

BACKGROUND: Studies of animal habitat selection are important to identify and preserve the resources species depend on, yet often little attention is paid to how habitat needs vary depending on behavioral state. Fishers (Pekania pennanti) are known to be dependent on large, mature trees for resting and denning, but less is known about their habitat use when foraging or moving within a home range. METHODS: We used GPS locations collected during the energetically costly pre-denning season from 12 female fishers to determine fisher habitat selection during two critical behavioral activities: foraging (moving) or resting, with a focus on response to forest structure related to past forest management actions since this is a primary driver of fisher habitat configuration. We characterized behavior based on high-resolution GPS and collar accelerometer data and modeled fisher selection for these two behaviors within a home range (third-order selection). Additionally, we investigated whether fisher use of elements of forest structure or other important environmental characteristics changed as their availability changed, i.e., a functional response, for each behavior type. RESULTS: We found that fishers exhibited specialist selection when resting and generalist selection when moving, with resting habitat characterized by riparian drainages with dense canopy cover and moving habitat primarily influenced by the presence of mesic montane mixed conifer forest. Fishers were more tolerant of forest openings and other early succession elements when moving than resting. CONCLUSIONS: Our results emphasize the importance of considering the differing habitat needs of animals based on their movement behavior when performing habitat selection analyses. We found that resting fishers are more specialist in their habitat needs, while foraging fishers are more generalist and will tolerate greater forest heterogeneity from past disturbance.

2.
Heliyon ; 10(12): e32670, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027453

RESUMO

To prevent convulsions and falls of patients in the absence of medical staff, it is crucial to monitor their physical condition in hospital wards. However, several unresolved challenges in human joint recognition remain, such as object occlusion, human self-occlusion and complex backgrounds, resulting in difficulties in its practical application. In this paper, a multi-LiDAR system is proposed to obtain a multi-view human body point cloud. An improved V2V-Posenet model was introduced to detect the actual position of the human joint. In this system, each point cloud was spliced into a full point cloud and voxelized into the model. We also used a random voxel zero setting for data enhancement, constraining the relative length between human joints into a loss function and three-dimensional Gaussian filtering in a heat map for model learning. The improved model exhibited excellent performance in detecting human joints in hospital wards. The experimental results showed that the improved model achieved 91.6 % mean average precision, compared to 80.1 % for the original model and 77.4 % for the comparison algorithm A2J-Posenet. The speed of the improved model meets the requirements for real-time target detection.

3.
Environ Pollut ; 359: 124556, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025291

RESUMO

Ground ozone (O3) pollution has emerged as a prominent environmental concern in eastern cities of China, particularly during the summer and autumn seasons. However, a comprehensive investigation into the three-dimensional (3-D) evolution characteristics of O3 within complicated urban environments, especially in lake-land environment, is notably scarce. To enhance our understanding of the mechanisms underlying elevated O3 concentrations within a 3-D scale, this study employed an ozone lidar to delineate vertical ozone profiles in Changzhou, a typical city in China with complicated anthropogenic and biogenic emissions and complex land cover. The process analysis tool integrated into the Weather Research and Forecasting with Chemistry (WRF-Chem) model was further utilized to analyze the formation processes of O3. The results unveil a persistent O3 pollution episode lasting over 15 days in Changzhou during the study period, with multiple peaks exceeding 200 µg m⁻³. Notably, O3 predominantly accumulated within the boundary layer, confined below 1.2 km. Both ground and vertical contributions to this pollution were mainly due to local chemical reactions, with a maximum near-surface contribution reaching 19 ppb h-1 and a vertical contribution of 10 ppb h-1 at the height of 900 ± 200 m. Furthermore, episodes of the enhanced O3 concentrations on August 9 and August 26, 2021, were influenced by external advection process. Our study also found that local circulation plays an important role in the accumulation of surface O3 during certain periods. There was a temperature difference between the surface of Lake Tai and the adjacent land, resulting in the formation of lake-land breezes that facilitate the transport of O3 from the lake surface to the terrestrial environment during pollution events. Our study emphasizes the necessity of reducing local pollutant emissions and implementing joint emission controls as the primary strategies for mitigating O3 pollution in Changzhou and the surrounding region.

4.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000836

RESUMO

Geohazards that have developed in densely vegetated alpine gorges exhibit characteristics such as remote occurrence, high concealment, and cascading effects. Utilizing a single remote sensing datum for their identification has limitations, while utilizing multiple remote sensing data obtained based on different sensors can allow comprehensive and accurate identification of geohazards in such areas. This study takes the Latudi River valley, a tributary of the Nujiang River in the Hengduan Mountains, as the research area, and comprehensively uses three techniques of remote sensing: unmanned aerial vehicle (UAV) Light Detection and Ranging (LiDAR), Small Baseline Subset interferometric synthetic aperture radar (SBAS-InSAR), and UAV optical remote sensing. These techniques are applied to comprehensively identify and analyze landslides, rockfalls, and debris flows in the valley. The results show that a total of 32 geohazards were identified, including 18 landslides, 8 rockfalls, and 6 debris flows. These hazards are distributed along the banks of the Latudi River, significantly influenced by rainfall and distribution of water systems, with deformation variables fluctuating with rainfall. The three types of geohazards cause cascading disasters, and exhibit different characteristics in the 0.5 m resolution hillshade map extracted from LiDAR data. UAV LiDAR has advantages in densely vegetated alpine gorges: after the selection of suitable filtering algorithms and parameters of the point cloud, it can obtain detailed terrain and geomorphological information on geohazards. The different remote sensing technologies used in this study can mutually confirm and complement each other, enhancing the capability to identify geohazards and their associated hazard cascades in densely vegetated alpine gorges, thereby providing valuable references for government departments in disaster prevention and reduction work.

5.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000880

RESUMO

Vehicle-infrastructure cooperative perception is becoming increasingly crucial for autonomous driving systems and involves leveraging infrastructure's broader spatial perspective and computational resources. This paper introduces CoFormerNet, which is a novel framework for improving cooperative perception. CoFormerNet employs a consistent structure for both vehicle and infrastructure branches, integrating the temporal aggregation module and spatial-modulated cross-attention to fuse intermediate features at two distinct stages. This design effectively handles communication delays and spatial misalignment. Experimental results using the DAIR-V2X and V2XSet datasets demonstrated that CoFormerNet significantly outperformed the existing methods, achieving state-of-the-art performance in 3D object detection.

6.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000898

RESUMO

The motivation behind this research is the lack of an underground mining shaft data set in the literature in the form of open access. For this reason, our data set can be used for many research purposes such as shaft inspection, 3D measurements, simultaneous localization and mapping, artificial intelligence, etc. The data collection method incorporates rotated Velodyne VLP-16, Velodyne Ultra Puck VLP-32c, Livox Tele-15, IMU Xsens MTi-30 and Faro Focus 3D. The ground truth data were acquired with a geodetic survey including 15 ground control points and 6 Faro Focus 3D terrestrial laser scanner stations of a total 273,784,932 of 3D measurement points. This data set provides an end-user case study of realistic applications in mobile mapping technology. The goal of this research was to fill the gap in the underground mining data set domain. The result is the first open-access data set for an underground mining shaft (shaft depth -300 m).

7.
Sensors (Basel) ; 24(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39001172

RESUMO

Studies have shown that vehicle trajectory data are effective for calibrating microsimulation models. Light Detection and Ranging (LiDAR) technology offers high-resolution 3D data, allowing for detailed mapping of the surrounding environment, including road geometry, roadside infrastructures, and moving objects such as vehicles, cyclists, and pedestrians. Unlike other traditional methods of trajectory data collection, LiDAR's high-speed data processing, fine angular resolution, high measurement accuracy, and high performance in adverse weather and low-light conditions make it well suited for applications requiring real-time response, such as autonomous vehicles. This research presents a comprehensive framework for integrating LiDAR sensor data into simulation models and their accurate calibration strategies for proactive safety analysis. Vehicle trajectory data were extracted from LiDAR point clouds collected at six urban signalized intersections in Lubbock, Texas, in the USA. Each study intersection was modeled with PTV VISSIM and calibrated to replicate the observed field scenarios. The Directed Brute Force method was used to calibrate two car-following and two lane-change parameters of the Wiedemann 1999 model in VISSIM, resulting in an average accuracy of 92.7%. Rear-end conflicts extracted from the calibrated models combined with a ten-year historical crash dataset were fitted into a Negative Binomial (NB) model to estimate the model's parameters. In all the six intersections, rear-end conflict count is a statistically significant predictor (p-value < 0.05) of observed rear-end crash frequency. The outcome of this study provides a framework for the combined use of LiDAR-based vehicle trajectory data, microsimulation, and surrogate safety assessment tools to transportation professionals. This integration allows for more accurate and proactive safety evaluations, which are essential for designing safer transportation systems, effective traffic control strategies, and predicting future congestion problems.

8.
Plant Methods ; 20(1): 102, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982502

RESUMO

BACKGROUND: Understanding how trees develop their root systems is crucial for the comprehension of how wildland and urban forest ecosystems plastically respond to disturbances such as harvest, fire, and climate change. The interplay between the endogenously determined root traits and the response to environmental stimuli results in tree adaptations to biotic and abiotic factors, influencing stability, carbon allocation, and nutrient uptake. Combining the three-dimensional structure of the root system, with root morphological trait information promotes a robust understanding of root function and adaptation plasticity. Low Magnetic Field Digitization coupled with AMAPmod (botAnique et Modelisation de l'Architecture des Plantes) software has been the best-performing method for describing root system architecture and providing reliable measurements of coarse root traits, but the pace and scale of data collection remain difficult. Instrumentation and applications related to Terrestrial Laser Scanning (TLS) have advanced appreciably, and when coupled with Quantitative Structure Models (QSM), have shown some potential toward robust measurements of tree root systems. Here we compare, we believe for the first time, these two methodologies by analyzing the root system of 32-year-old Pinus ponderosa trees. RESULTS: In general, at the total root system level and by root-order class, both methods yielded comparable values for the root traits volume, length, and number. QSM for each root trait was highly sensitive to the root size (i.e., input parameter PatchDiam) and models were optimized when discrete PatchDiam ranges were specified for each trait. When examining roots in the four cardinal direction sectors, we observed differences between methodologies for length and number depending on root order but not volume. CONCLUSIONS: We believe that TLS and QSM could facilitate rapid data collection, perhaps in situ, while providing quantitative accuracy, especially at the total root system level. If more detailed measures of root system architecture are desired, a TLS method would benefit from additional scans at differing perspectives, avoiding gravitational displacement to the extent possible, while subsampling roots by hand to calibrate and validate QSM models. Despite some unresolved logistical challenges, our results suggest that future use of TLS may hold promise for quantifying tree root system architecture in a rapid, replicable manner.

9.
Front Plant Sci ; 15: 1369501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988641

RESUMO

Diameter and height are crucial morphological parameters of banana pseudo-stems, serving as indicators of the plant's growth status. Currently, in densely cultivated banana plantations, there is a lack of applicable research methods for the scalable measurement of phenotypic parameters such as diameter and height of banana pseudo-stems. This paper introduces a handheld mobile LiDAR and Inertial Measurement Unit (IMU)-fused laser scanning system designed for measuring phenotypic parameters of banana pseudo-stems within banana orchards. To address the challenges posed by dense canopy cover in banana orchards, a distance-weighted feature extraction method is proposed. This method, coupled with Lidar-IMU integration, constructs a three-dimensional point cloud map of the banana plantation area. To overcome difficulties in segmenting individual banana plants in complex environments, a combined segmentation approach is proposed, involving Euclidean clustering, Kmeans clustering, and threshold segmentation. A sliding window recognition method is presented to determine the connection points between pseudo-stems and leaves, mitigating issues caused by crown closure and heavy leaf overlap. Experimental results in banana orchards demonstrate that, compared with manual measurements, the mean absolute errors and relative errors for banana pseudo-stem diameter and height are 0.2127 cm (4.06%) and 3.52 cm (1.91%), respectively. These findings indicate that the proposed method is suitable for scalable measurements of banana pseudo-stem diameter and height in complex, obscured environments, providing a rapid and accurate inter-orchard measurement approach for banana plantation managers.

10.
Front Plant Sci ; 15: 1361297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036357

RESUMO

Because of the high cost of manual surveys, the analysis of spatial change of forest structure at the regional scale faces a difficult challenge. Spaceborne LiDAR can provide global scale sampling and observation. Taking this opportunity, dense natural forest canopy cover (NFCC) observations obtained by combining spaceborne LiDAR data, plot survey, and machine learning algorithm were used as spatial attributes to analyze the spatial effects of NFCC. Specifically, based on ATL08 (Land and Vegetation Height) product generated from Ice, Cloud and land Elevation Satellite-2/Advanced Topographic Laser Altimeter System (ICESat-2/ATLAS) data and 80 measured plots, the NFCC values located at the LiDAR's footprint locations were predicted by the ML model. Based on the predicted NFCC, the spatial effects of NFCC were analyzed by Moran's I and semi-variogram. The results showed that (1) the Random Forest (RF) model had the strongest predicted performance among the built ML models (R2=0.75, RMSE=0.09); (2) the NFCC had a positive spatial correlation (Moran's I = 0.36), that is, the CC of adjacent natural forest footprints had similar trends or values, belonged to the spatial agglomeration distribution; the spatial variation was described by the exponential model (C0 = 0.12×10-2, C = 0.77×10-2, A0 = 10200 m); (3) topographic factors had significant effects on NFCC, among which elevation was the largest, slope was the second, and aspect was the least; (4) the NFCC spatial distribution obtained by SGCS was in great agreement with the footprint NFCC (R2 = 0.59). The predictions generated from the RF model constructed using ATL08 data offer a dependable data source for the spatial effects analysis.

11.
J Environ Manage ; 365: 121673, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959765

RESUMO

We used UAV-LiDAR technology and other advanced remote sensing techniques to evaluate mangrove rehabilitation projects along the eroding shoreline of the Upper Gulf of Thailand. Our results delineate the necessary biophysical conditions for successfully rehabilitating mangroves, establishing optimal conditions under which mangroves can naturally re-establish and thrive. Furthermore, we investigated the effectiveness of different coastal defense structures in fostering mangrove recolonization. Our analysis shows that nearshore breakwaters markedly outperform submerged breakwaters and bamboo fences, with a success rate of over 65% by significantly reducing wave energy that aids sediment trapping. These findings suggest that refinements in the configuration of coastal structures, including the elevation of breakwater crests and selective deployment of bamboo fences, will enhance mangrove rehabilitation success. These insights affirm the role of UAV-LiDAR surveys for optimizing mangrove restoration initiatives, thereby facilitating sustainable development for coastlines plagued by erosion. The insights gleaned offer a blueprint for bolstering the success rate of mangrove rehabilitation projects, directing them toward sustainable coastal development.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Conservação dos Recursos Naturais/métodos , Tailândia , Desenvolvimento Sustentável
12.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065873

RESUMO

In the context of LiDAR sensor-based autonomous vehicles, segmentation networks play a crucial role in accurately identifying and classifying objects. However, discrepancies between the types of LiDAR sensors used for training the network and those deployed in real-world driving environments can lead to performance degradation due to differences in the input tensor attributes, such as x, y, and z coordinates, and intensity. To address this issue, we propose novel intensity rendering and data interpolation techniques. Our study evaluates the effectiveness of these methods by applying them to object tracking in real-world scenarios. The proposed solutions aim to harmonize the differences between sensor data, thereby enhancing the performance and reliability of deep learning networks for autonomous vehicle perception systems. Additionally, our algorithms prevent performance degradation, even when different types of sensors are used for the training data and real-world applications. This approach allows for the use of publicly available open datasets without the need to spend extensive time on dataset construction and annotation using the actual sensors deployed, thus significantly saving time and resources. When applying the proposed methods, we observed an approximate 20% improvement in mIoU performance compared to scenarios without these enhancements.

13.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066044

RESUMO

A system has been developed to convert manual wheelchairs into electric wheelchairs, providing assistance to users through the implemented algorithm, which ensures safe driving and obstacle avoidance. While manual wheelchairs are typically controlled indoors based on user preferences, they do not guarantee safe driving in areas outside the user's field of vision. The proposed model utilizes the dynamic window approach specifically designed for wheelchair use, allowing for obstacle avoidance. This method evaluates potential movements within a defined velocity space to calculate the optimal path, providing seamless and safe driving assistance in real time. This innovative approach enhances user assistance and safety by integrating state-of-the-art algorithms developed using the dynamic window approach alongside advanced sensor technology. With the assistance of LiDAR sensors, the system perceives the wheelchair's surroundings, generating real-time speed values within the algorithm framework to ensure secure driving. The model's ability to adapt to indoor environments and its robust performance in real-world scenarios underscore its potential for widespread application. This study has undergone various tests, conclusively proving that the system aids users in avoidance obstacles and ensures safe driving. These tests demonstrate significant improvements in maneuverability and user safety, highlighting a noteworthy advancement in assistive technology for individuals with limited mobility.


Assuntos
Algoritmos , Cadeiras de Rodas , Humanos , Desenho de Equipamento , Condução de Veículo , Eletricidade
14.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066063

RESUMO

Recently, the growing demand for autonomous driving in the industry has led to a lot of interest in 3D object detection, resulting in many excellent 3D object detection algorithms. However, most 3D object detectors focus only on a single set of LiDAR points, ignoring their potential ability to improve performance by leveraging the information provided by the consecutive set of LIDAR points. In this paper, we propose a novel 3D object detection method called temporal motion-aware 3D object detection (TM3DOD), which utilizes temporal LiDAR data. In the proposed TM3DOD method, we aggregate LiDAR voxels over time and the current BEV features by generating motion features using consecutive BEV feature maps. First, we present the temporal voxel encoder (TVE), which generates voxel representations by capturing the temporal relationships among the point sets within a voxel. Next, we design a motion-aware feature aggregation network (MFANet), which aims to enhance the current BEV feature representation by quantifying the temporal variation between two consecutive BEV feature maps. By analyzing the differences and changes in the BEV feature maps over time, MFANet captures motion information and integrates it into the current feature representation, enabling more robust and accurate detection of 3D objects. Experimental evaluations on the nuScenes benchmark dataset demonstrate that the proposed TM3DOD method achieved significant improvements in 3D detection performance compared with the baseline methods. Additionally, our method achieved comparable performance to state-of-the-art approaches.

15.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066115

RESUMO

3D object detection is a challenging and promising task for autonomous driving and robotics, benefiting significantly from multi-sensor fusion, such as LiDAR and cameras. Conventional methods for sensor fusion rely on a projection matrix to align the features from LiDAR and cameras. However, these methods often suffer from inadequate flexibility and robustness, leading to lower alignment accuracy under complex environmental conditions. Addressing these challenges, in this paper, we propose a novel Bidirectional Attention Fusion module, named BAFusion, which effectively fuses the information from LiDAR and cameras using cross-attention. Unlike the conventional methods, our BAFusion module can adaptively learn the cross-modal attention weights, making the approach more flexible and robust. Moreover, drawing inspiration from advanced attention optimization techniques in 2D vision, we developed the Cross Focused Linear Attention Fusion Layer (CFLAF Layer) and integrated it into our BAFusion pipeline. This layer optimizes the computational complexity of attention mechanisms and facilitates advanced interactions between image and point cloud data, showcasing a novel approach to addressing the challenges of cross-modal attention calculations. We evaluated our method on the KITTI dataset using various baseline networks, such as PointPillars, SECOND, and Part-A2, and demonstrated consistent improvements in 3D object detection performance over these baselines, especially for smaller objects like cyclists and pedestrians. Our approach achieves competitive results on the KITTI benchmark.

16.
Ecology ; : e4366, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961606

RESUMO

Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree-years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within-species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental-scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.

17.
Plant Methods ; 20(1): 88, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849856

RESUMO

To date, only a limited number of studies have utilized remote sensing imagery to estimate aboveground biomass (AGB) in the Miombo ecoregion using wall-to-wall medium resolution optical satellite imagery (Sentinel-2 and Landsat), localized airborne light detection and ranging (lidar), or localized unmanned aerial systems (UAS) images. On the one hand, the optical satellite imagery is suitable for wall-to-wall coverage, but the AGB estimates based on such imagery lack precision for local or stand-level sustainable forest management and international reporting mechanisms. On the other hand, the AGB estimates based on airborne lidar and UAS imagery have the precision required for sustainable forest management at a local level and international reporting requirements but lack capacity for wall-to-wall coverage. Therefore, the main aim of this study was to investigate the use of UAS-lidar as a sampling tool for satellite-based AGB estimation in the Miombo woodlands of Zambia. In order to bridge the spatial data gap, this study employed a two-phase sampling approach, utilizing Sentinel-2 imagery, partial-coverage UAS-lidar data, and field plot data to estimate AGB in the 8094-hectare Miengwe Forest, Miombo Woodlands, Zambia, where UAS-lidar estimated AGB was used as reference data for estimating AGB using Sentinel-2 image metrics. The findings showed that utilizing UAS-lidar as reference data for predicting AGB using Sentinel-2 image metrics yielded superior results (Adj-R2 = 0.70, RMSE = 27.97) than using direct field estimated AGB and Sentinel-2 image metrics (R2 = 0.55, RMSE = 38.10). The quality of AGB estimates obtained from this approach, coupled with the ongoing advancement and cost-cutting of UAS-lidar technology as well as the continuous availability of wall-to-wall optical imagery such as Sentinel-2, provides much-needed direction for future forest structural attribute estimation for efficient management of the Miombo woodlands.

18.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894097

RESUMO

Road safety is a serious concern worldwide, and traffic signs play a critical role in confirming road safety, particularly in the context of AVs. Therefore, there is a need for ongoing advancements in traffic sign evaluation methodologies. This paper comprehensively analyzes the relationship between traffic sign retroreflectivity and LiDAR intensity to enhance visibility and communication on road networks. Using Python 3.10 programming and statistical techniques, we thoroughly analyzed handheld retroreflectivity coefficients alongside LiDAR intensity data from two LiDAR configurations: 2LRLiDAR and 1CLiDAR systems. The study focused specifically on RA1 and RA2 traffic sign classes, exploring correlations between retroreflectivity and intensity and identifying factors that may impact their performance. Our findings reveal variations in retroreflectivity compliance rates among different sign categories and color compositions, emphasizing the necessity for targeted interventions in sign design and production processes. Additionally, we observed distinct patterns in LiDAR intensity distributions, indicating the potential of LiDAR technology for assessing sign visibility. However, the limited correlations between retroreflectivity and LiDAR intensity underscore the need for further investigation and standardization efforts. This study provides valuable insights into optimizing traffic sign effectiveness, ultimately contributing to improved road safety conditions.

19.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894167

RESUMO

A combination tillage with disks, rippers, and roller baskets allows the loosening of compacted soils and the crumbling of soil clods. Statistical methods for evaluating the soil tilth quality of combination tillage are limited. Light Detection and Ranging (LiDAR) data and machine learning models (Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN)) are proposed to investigate roller basket pressure settings on soil tilth quality. Soil profiles were measured using LiDAR (stop and go and on-the-go) and RGB visual images from a Completely Randomized Design (CRD) tillage experiment on clay loam soil with treatments of roller basket down, roller basket up, and no-till in three replicates. Utilizing RF, SVM, and NN methods on the LiDAR data set identified median, mean, maximum, and standard deviation as the top features of importance variables that were statistically affected by the roller settings. Applying multivariate discriminatory analysis on the four statistical measures, three soil tilth classes were predicted with mean prediction rates of 77% (Roller-basket down), 64% (Roller-basket up), and 90% (No till). The LiDAR data analytics-inspired soil tilth classes correlated well with the RGB image discriminatory analysis. Soil tilth machine learning models were shown to be successful in classifying soil tilth with regard to onboard operator pressure control settings on the roller basket of the combination tillage implement.

20.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894216

RESUMO

In this paper, we propose a novel, vision-transformer-based end-to-end pose estimation method, LidPose, for real-time human skeleton estimation in non-repetitive circular scanning (NRCS) lidar point clouds. Building on the ViTPose architecture, we introduce novel adaptations to address the unique properties of NRCS lidars, namely, the sparsity and unusual rosetta-like scanning pattern. The proposed method addresses a common issue of NRCS lidar-based perception, namely, the sparsity of the measurement, which needs balancing between the spatial and temporal resolution of the recorded data for efficient analysis of various phenomena. LidPose utilizes foreground and background segmentation techniques for the NRCS lidar sensor to select a region of interest (RoI), making LidPose a complete end-to-end approach to moving pedestrian detection and skeleton fitting from raw NRCS lidar measurement sequences captured by a static sensor for surveillance scenarios. To evaluate the method, we have created a novel, real-world, multi-modal dataset, containing camera images and lidar point clouds from a Livox Avia sensor, with annotated 2D and 3D human skeleton ground truth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA