Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 23(42): 10167-10176, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28543880

RESUMO

A detailed quantum chemical study that analyzed the mechanism of ethylene oligomerization and polymerization by means of a family of four neutral methallyl NiII catalysts is presented. The role of the boron co-activators, BF3 and B(C6 F5 )3 , and the position of ligand functionalization (ortho or para position of the N-arylcyano moiety of the catalysts) were investigated to explain the chain length of the obtained polymers. The chain initialization proceeded with higher activation barriers for the ortho-functionalized complexes (≈19 kcal mol-1 ) than the para-substituted isomers (17-18 kcal mol-1 ). Two main pathways were revealed for the chain propagation: The first pathway was favored when using the B(C6 F5 )3 co-activated catalyst, and it produced long-chain polymers. A second pathway led to the ß-hydrogen complexes, which resulted in chain oligomerization; this pathway was preferred when the BF3 co-activated catalysts were used. Otherwise, the termination of longer chains occurred via a stable hydride intermediate, which was formed with an energy barrier of about 14 kcal mol-1 for the B(C6 F5 )3 co-activated catalysts. Significant new insights were made into the reaction mechanism, whereby neutral methallyl NiII catalysts act in oligomerization and polymerization processes. Specifically, the role of co-activation and ligand functionalization, which are key information for the further design of related catalysts, were revealed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA