Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114433, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985679

RESUMO

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.


Assuntos
ADP-Ribosilação , Proteína BRCA1 , Neoplasias da Mama , Dano ao DNA , Serina , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Serina/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética
2.
Biol Chem ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39066732

RESUMO

The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.

3.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712082

RESUMO

PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses.

4.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260573

RESUMO

All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication.

5.
J Virol ; 98(2): e0177723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289106

RESUMO

Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.


Assuntos
Coronavirus , Rubéola (Sarampo Alemão) , Humanos , Vírus da Rubéola/genética , Vírus da Rubéola/metabolismo , Ribose , Poli(ADP-Ribose) Polimerases/genética , Poli Adenosina Difosfato Ribose , Coronavirus/metabolismo , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo
6.
Drug Discov Today ; 29(1): 103832, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977285

RESUMO

As a highly contagious human pathogen, severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) has infected billions of people worldwide with more than 6 million deaths. With several effective vaccines and antiviral drugs now available, the SARS-CoV-2 pandemic been brought under control. However, a new pathogenic coronavirus could emerge in the future, given the zoonotic nature of this virus. Natural evolution and drug-induced mutations of SARS-CoV-2 also require continued efforts for new anti-coronavirus drugs. Nonstructural protein (nsp) 3 of CoVs is a large, multifunctional protein, containing a papain-like protease (PLpro) and a macrodomain (Mac1), which are essential for viral replication. Here, we provide a comprehensive review of the function, structure, and inhibition of SARS-CoV/-CoV-2 PLpro and Mac1. We also discuss advances in, and challenges to, the discovery of drugs against these targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Replicação Viral , Descoberta de Drogas
7.
Viruses ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140532

RESUMO

Since the emergence of SARS-CoV-2, many genetic variations within its genome have been identified, but only a few mutations have been found in nonstructural proteins (NSPs). Among this class of viral proteins, NSP3 is a multidomain protein with 16 different domains, and its largest domain is known as the macrodomain or Mac1 domain. In this study, we present a virtual screening campaign in which we computationally evaluated the NCI anticancer library against the NSP3 Mac1 domain, using Molegro Virtual Docker. The top hits with the best MolDock and Re-Rank scores were selected. The physicochemical analysis and drug-like potential of the top hits were analyzed using the SwissADME data server. The binding stability and affinity of the top NSC compounds against the NSP3 Mac1 domain were analyzed using molecular dynamics (MD) simulation, using Desmond software, and their interaction energies were analyzed using the MM/GBSA method. In particular, by applying subsequent computational filters, we identified 10 compounds as possible NSP3 Mac1 domain inhibitors. Among them, after the assessment of binding energies (ΔGbind) on the whole MD trajectories, we identified the four most interesting compounds that acted as strong binders of the NSP3 Mac1 domain (NSC-358078, NSC-287067, NSC-123472, and NSC-142843), and, remarkably, it could be further characterized for developing innovative antivirals against SARS-CoV-2.


Assuntos
COVID-19 , Inibidores de Protease de Coronavírus , Simulação de Dinâmica Molecular , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Tratamento Farmacológico da COVID-19/métodos
8.
Pathogens ; 12(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887737

RESUMO

Non-structural protein 3 (nsp3) from all coronaviruses (CoVs) contains a conserved macrodomain, known as Mac1, that has been proposed as a potential therapeutic target for CoVs due to its critical role in viral pathogenesis. Mac1 is an ADP-ribose binding protein and ADP-ribosylhydrolase that promotes replication and blocks IFN responses, though the precise mechanisms it uses to carry out these functions remain unknown. Over the past 3 years following the onset of COVID-19, several groups have used high-throughput screening with multiple assays and chemical modifications to create unique chemical inhibitors of the SARS-CoV-2 Mac1 protein. Here, we summarize the current efforts to identify selective and potent inhibitors of SARS-CoV-2 Mac1.

9.
Viruses ; 15(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37766313

RESUMO

Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.

10.
J Virol ; 97(9): e0088523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695054

RESUMO

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.


Assuntos
Genes Virais , Vírus da Hepatite Murina , Mutação , Poli(ADP-Ribose) Polimerases , Replicação Viral , Animais , Camundongos , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Interferons/imunologia , Camundongos Knockout , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Especificidade de Órgãos , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Replicação Viral/genética , Linhagem Celular
11.
Proc Natl Acad Sci U S A ; 120(35): e2302083120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607224

RESUMO

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Hepatite Murina , Animais , Camundongos , SARS-CoV-2/genética , Técnicas de Cultura de Células , Linhagem Celular , Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio/genética
12.
J Biol Chem ; 299(9): 105096, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507011

RESUMO

PARP14/BAL2 is a large multidomain enzyme involved in signaling pathways with relevance to cancer, inflammation, and infection. Inhibition of its mono-ADP-ribosylating PARP homology domain and its three ADP-ribosyl binding macro domains has been regarded as a potential means of therapeutic intervention. Macrodomains-2 and -3 are known to stably bind to ADP-ribosylated target proteins, but the function of macrodomain-1 has remained somewhat elusive. Here, we used biochemical assays of ADP-ribosylation levels to characterize PARP14 macrodomain-1 and the homologous macrodomain-1 of PARP9. Our results show that both macrodomains display an ADP-ribosyl glycohydrolase activity that is not directed toward specific protein side chains. PARP14 macrodomain-1 is unable to degrade poly(ADP-ribose), the enzymatic product of PARP1. The F926A mutation of PARP14 and the F244A mutation of PARP9 strongly reduced ADP-ribosyl glycohydrolase activity of the respective macrodomains, suggesting mechanistic homology to the Mac1 domain of the SARS-CoV-2 Nsp3 protein. This study adds two new enzymes to the previously known six human ADP-ribosyl glycohydrolases. Our results have key implications for how PARP14 and PARP9 will be studied and how their functions will be understood.

13.
Microbiol Spectr ; 11(4): e0537122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409962

RESUMO

Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Vírus Chikungunya/genética , Febre de Chikungunya/metabolismo , Nucleofosmina , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral , Interferons
14.
J Biomol Struct Dyn ; : 1-9, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349935

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has led to over 600 million cases of coronavirus disease 2019 (COVID-19). Identifying effective molecules that can counteract the virus is imperative. SARS-CoV-2 macrodomain 1 (Mac1) represents a promising antiviral drug target. In this study, we predicted potential inhibitors of SARS-CoV-2 Mac1 from natural products using in silico-based screening. Based on the high-resolution crystal structure of Mac1 bound to its endogenous ligand ADP-ribose (ADPr), we first performed a docking-based virtual screening of Mac1 inhibitors against a natural product library and obtained five representative compounds (MC1-MC5) by clustering analysis. All five compounds were stably bound to Mac1 during 500 ns long molecular dynamics simulations. The binding free energy of these compounds to Mac1 was calculated using molecular mechanics generalized Born surface area and further refined with localized volume-based metadynamics. The results demonstrated that both MC1 (-9.8 ± 0.3 kcal/mol) and MC5 (-9.6 ± 0.3 kcal/mol) displayed more favorable affinities to Mac1 with respect to ADPr (-8.9 ± 0.3 kcal/mol), highlighting their potential as potent SARS-CoV-2 Mac1 inhibitors. Overall, this study provides potential SARS-CoV-2 Mac1 inhibitors, which may pave the way for developing effective therapeutics for COVID-19.Communicated by Ramaswamy H. Sarma.

15.
Pathogens ; 12(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37242344

RESUMO

Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host-virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.

16.
Pathogens ; 12(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986379

RESUMO

Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9-PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.

17.
Pathogens ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839595

RESUMO

The worldwide public health and socioeconomic consequences caused by the COVID-19 pandemic highlight the importance of increasing preparedness for viral disease outbreaks by providing rapid disease prevention and treatment strategies. The NSP3 macrodomain of coronaviruses including SARS-CoV-2 is among the viral protein repertoire that was identified as a potential target for the development of antiviral agents, due to its critical role in viral replication and consequent pathogenicity in the host. By combining virtual and biophysical screening efforts, we discovered several experimental small molecules and FDA-approved drugs as inhibitors of the NSP3 macrodomain. Analogue characterisation of the hit matter and crystallographic studies confirming binding modes, including that of the antibiotic compound aztreonam, to the active site of the macrodomain provide valuable structure-activity relationship information that support current approaches and open up new avenues for NSP3 macrodomain inhibitor development.

18.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598939

RESUMO

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia , Pandemias , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Antivirais/química
19.
Semin Cell Dev Biol ; 135: 43-49, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35422391

RESUMO

The replacement of replication-coupled histones with non-canonical histone variants provides chromatin with additional properties and contributes to the plasticity of the epigenome. MacroH2A histone variants are counterparts of the replication-coupled histone H2A. They are characterized by a unique tripartite structure, consisting of a histone fold, an unstructured linker, and a globular macrodomain. MacroH2A1.1 and macroH2A1.2 are the result of alternative splicing of the MACROH2A1 gene and can have opposing biological functions. Here, we discuss the structural differences between the macrodomains of the two isoforms, resulting in differential ligand binding. We further discuss how this modulates gene regulation by the two isoforms, in cases resulting in opposing role of macroH2A1.1 and macroH2A1.2 in development and differentiation. Finally, we share recent insight in the evolution of macroH2As. Taken together, in this review, we aim to discuss in unprecedented detail distinct properties and functions of the fascinating macroH2A1 splice isoforms.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulação da Expressão Gênica
20.
Methods Mol Biol ; 2609: 111-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515833

RESUMO

ADP-ribosylation is an ancient modification of proteins, nucleic acids, and other biomolecules found in all kingdoms of life as well as in certain viruses. The regulation of fundamental (patho)physiological processes by ADP-ribosylation, including the cellular stress response, inflammation, and immune response to bacterial and viral pathogens, has created a strong interest into the study of modification establishment and removal to explore novel therapeutic approaches. Beyond ADP-ribosylation in humans, direct targeting of factors that alter host ADP-ribosylation signaling (e.g., viral macrodomains) or utilize ADP-ribosylation to manipulate host cell behavior (e.g., bacterial toxins) were shown to reduce virulence and disease severity. However, the realization of these therapeutic potentials is thus far hampered by the unavailability of simple, high-throughput methods to study the modification "writers" and "erasers" and screen for novel inhibitors.Here, we describe a scalable method for the measurement of (ADP-ribosyl)hydrolase activity. The assay relies on the conversion of ADP-ribose released from a modified substrate by the (ADP-ribosyl)hydrolase under investigation into AMP by the phosphodiesterase NudT5 into bioluminescence via a commercially available detection assay. Moreover, this method can be utilized to study the role of nudix- or ENPP-type phosphodiesterases in ADP-ribosylation processing and may also be adapted to investigate the activity of (ADP-ribosyl)transferases. Overall, this method is applicable for both basic biochemical characterization and screening of large drug libraries; hence, it is highly adaptable to diverse project needs.


Assuntos
ADP-Ribosilação , Adenosina Difosfato Ribose , Humanos , Adenosina Difosfato Ribose/química , Proteínas/química , Diester Fosfórico Hidrolases/metabolismo , Hidrolases/metabolismo , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA