Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.851
Filtrar
1.
J Colloid Interface Sci ; 676: 110-126, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39018804

RESUMO

Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.

2.
J Environ Manage ; 366: 121805, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018859

RESUMO

Sulfurized nanoscale zero-valent iron supported on biochar (BC-SNZVI) has been successfully synthesized for 2,4,6-trichlorophenol (2,4,6-TCP) removal, while was only effectively under acidic conditions. To obtain highly efficient removal of 2,4,6-TCP within a broader pH range, weak static magnetic fields (WMF) was applied in BC-SNZVI/2,4,6-TCP aqueous systems. Results showed 30 mT WMF supported the most extensive 2,4,6-TCP removal, and 87.4% of 2,4,6-TCP (initial concentration of 30 mg/L) was removed by 0.5 g/L BC-SNZVI at neutral pH (pH = 6.8) within 180 min, which was increased by 54.4% compared to that without WMF. The observed rate constant (Kobs) under 30 mT WMF was 2.1-fold greater than that without WMF. Although three typical anions (NO3- (0.5-10.0 mM), H2PO4- (0.05-0.5 mM), and HCO3- (0.5-5.0 mM)) still inhibited 2,4,6-TCP removal, WMF could efficiently alleviate the inhibitory effects. Moreover, 73.1% of 2,4,6-TCP was successfully removed by BC-SNZVI under WMF in natural water. WMF remarkably boosted the dechlorination of 2,4,6-TCP, increasing the 2,4,6-TCP dechlorination efficiency from 45.2% (in the absence of WMF) to 83.8% (in the presence of WMF) by the end of 300 min. And the complete dechlorination product phenol appeared within 10 min. Force analysis confirmed the magnetic field gradient force (FB) moved paramagnetic Fe2+ at the SNZVI surface along the direction perpendicular to the external applied field, promoting the mass-transfer controlled SNZVI corrosion. Corrosion resistance analysis revealed WMF promoted the electron-transfer controlled SNZVI corrosion by decreasing its self-corrosion potential (Ecorr). With the introduction of sulfur, the magnitude of FB doubled and the Ecorr decreased comparing with NZVI. Our findings provide a facile and viable strategy for treating chlorinated phenols at neutral pH.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39020245

RESUMO

Bacterial resilience within biofilms, rendering them up to 1000 times more resistant to antibiotic drugs, poses a formidable challenge. This study introduces a targeted biofilm eradication strategy, termed "target-penetration-killing-eradication", implemented through magnetic micro-robotic technology. Specifically, we present the development of a magnetic-guided nano-antibacterial platform designed for alternating magnetic field (AMF) controlled vancomycin release in the eradication of Staphylococcus aureus biofilms. To address the issue of premature vancomycin release in physiological conditions, we employed a temperature-sensitive linking agent, 4,4'-azobis(4-cyano valeric acid), facilitating the conjugation of vancomycin onto Fe3O4/CS nanocomposites, resulting in the novel construct Fe3O4@CS-ACVA-VH. The release mechanism adheres to first-order kinetics and Fickian diffusion, with each 10-min AMF treatment releasing approximately 8.4 ± 1.1% of vancomycin. The potency of vancomycin in the release solution was similar to that of the original drug (MIC: 7.4 ± 3.5 vs. 5.6 µg/mL). Fe3O4@CS-ACVA-VH exhibited sustained antibacterial efficacy, inhibiting bacterial growth for four consecutive days and preventing the formation of bacterial biofilms on its surface. Contact-inhibition bacterial activity of Fe3O4@CS-ACVA-VH against S. aureus was 0.046875 mg/mL. Conceptually validating our approach, we emphasize Fe3O4@CS-ACVA-VH's exceptional ability to penetrate S. aureus biofilms under static magnetic field attraction. Furthermore, the nano-platform offers the unique advantage of on-demand vancomycin release through alternating magnetic field stimulation, effectively clearing a larger biofilm area. This multifunctional nano-platform demonstrates magnetic-guided biofilm penetration followed by controlled vancomycin release, presenting a promising strategy for enhanced biofilm eradication.

4.
Cell Biochem Biophys ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023678

RESUMO

Magnetic Resonance Imaging (MRI) is an important diagnostic technique that uses powerful magnetic fields to generate detailed images of the human body. The aim of this study is to investigate to how static magnetic fields (SMF) affect the levels of trace elements and biochemical parameters in MRI staff' blood serum. This study examines the impacts of these exposures of 18 participants (9 males and 9 females) aged between 25 and 60.on the levels of trace elements in the blood serum and the biochemical parameters of the MRI staff at Azadi Teaching Hospital in Duhok and Zakho General Hospital-Bidari in Zakho City. Eighteen participants, consisting of nine males and nine females aged between 25 and 60, were selected from these hospitals. The researchers obtained blood samples and conducted analysis to determine the presence of trace elements (sodium, potassium, calcium, chloride) as well as numerous biochemical markers. The results showed that potassium and calcium levels increased with age, and older females had considerable deviations. Chloride levels exhibited a significant increase with age in both males and females. Glucose, creatinine, uric acid, and urea levels showed an increase with age, suggesting the possible damage to kidney function caused by continuous exposure to MRI. Increased levels of liver enzymes (GPT, GOT, ALP) and thyroid-stimulating hormone (TSH) were noticed, particularly in older females, indicating potential liver and thyroid dysfunction. These results highlight the importance of applying strict safety protocols and conducting regular health assessments for MRI personnel to minimize the possible hazards.

5.
Zool Res ; 45(4): 924-936, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021081

RESUMO

Amyloid beta (Aß) monomers aggregate to form fibrils and amyloid plaques, which are critical mechanisms in the pathogenesis of Alzheimer's disease (AD). Given the important role of Aß1-42 aggregation in plaque formation, leading to brain lesions and cognitive impairment, numerous studies have aimed to reduce Aß aggregation and slow AD progression. The diphenylalanine (FF) sequence is critical for amyloid aggregation, and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings. In this study, we examined the effects of a moderate-intensity rotating magnetic field (RMF) on Aß aggregation and AD pathogenesis. Results indicated that the RMF directly inhibited Aß amyloid fibril formation and reduced Aß-induced cytotoxicity in neural cells in vitro. Using the AD mouse model APP/PS1, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities. Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation, attenuated microglial activation, and reduced oxidative stress in the APP/PS1 mouse brain. These findings suggest that RMF holds considerable potential as a non-invasive, high-penetration physical approach for AD treatment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Camundongos , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Campos Magnéticos , Modelos Animais de Doenças , Placa Amiloide , Encéfalo/metabolismo
6.
J Magn Reson ; 365: 107709, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38991265

RESUMO

Sensitivity is the foundation of every NMR experiment, and the signal-to-noise ratio (SNR) should increase with static (B0) magnetic field, by a proportionality that primarily depends on the design of the NMR probe and receiver. In the low B0 field limit, where the coil geometry is much smaller than the wavelength of the NMR frequency, SNR can increase in proportion to B0 to the power 7/4. For modern magic-angle spinning (MAS) probes, this approximation holds for rotor sizes up to 3.2 mm at 14.1 Tesla (T), corresponding to 600 MHz 1H and 151 MHz 13C Larmor frequencies. To obtain the anticipated benefit of larger coils and/or higher B0 fields requires a quantitative understanding of the contributions to SNR, utilizing standard samples and protocols that reproduce SNR measurements with high accuracy and precision. Here, we present such a systematic and comprehensive study of 13C SNR under MAS over the range of 14.1 to 21.1 T. We evaluate a range of probe designs utilizing 1.6, 2.5 and 3.2 mm rotors, including 24 different sets of measurements on 17 probe configurations using five spectrometers. We utilize N-acetyl valine as the primary standard and compare and contrast with other commonly used standard samples (adamantane, glycine, hexamethylbenzene, and 3-methylglutaric acid). These robust approaches and standard operating procedures provide an improved understanding of the contributions from probe efficiency, receiver noise figure, and B0 dependence in a range of custom-designed and commercially available probes. We find that the optimal raw SNR is obtained with balanced 3.2 mm design at 17.6 T, that the best mass-limited SNR is achieved with a balanced 1.6 mm design at 21.1 T, and that the raw SNR at 21.1 T reaches diminishing returns with rotors larger than 2.5 mm.

7.
Foods ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998495

RESUMO

The present study demonstrates the effects of pH-shifting treatments and magnetic field-assisted pH-shifting treatments on the properties of myofibrillar protein (MP) in frozen meat. The solubility results indicate that the pH-shifting treatments increased the solubility of MP from 16.8% to a maximum of 21.0% (pH 9). The values of surface hydrophobicity and protein particle size distribution indicate that the pH-shifting treatment effectively inhibited protein aggregation through electrostatic interactions. However, under higher pH conditions (pH 10, 11), the treatments assisted by the magnetic field increased the degree of aggregation. The total thiol content and SDS-PAGE results further suggest that the magnetic field-assisted pH-shifting treatment accelerated the formation of covalent bonds among MPs under the alkaline environment. The results of the Differential Scanning Calorimetry (DSC) and protein secondary structure analysis indicate that the magnetic field promoted the unfolding of protein structures in an alkaline environment, markedly reducing the effective pH levels of pH-shifting. Electron paramagnetic resonance (EPR) data indicate that the phenomenon might be associated with the increased concentration of free radicals caused by the magnetic field treatment. In summary, the application of magnetic field-assisted pH-shifting treatments could emerge as a potent and promising strategy to improve the protein properties in frozen meat.

8.
Molecules ; 29(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999079

RESUMO

Transition-metal-based oxygen evolution reaction (OER) catalysts have attracted widespread attention due to their inexpensive prices, unique layered structures, and rich active sites. Currently, designing low-cost, sustainable, and simple synthesis methods is essential for the application of transition-metal-based catalysts. Here, magnetic field (MF)-assisted chemical corrosion, as a novel technology, is adopted to construct superior OER electrocatalysts. The produced Ni(Fe)(OH)2-Fe2O3 electrode exhibits an overpotential of 272 mV at a current density of 100 mA cm-2, presenting a 64 mV reduction compared to the electrode without an MF. The experimental results indicate that an MF can induce the directional growth of Fe2O3 rods and reduce their accumulation. In addition, an external MF is beneficial for the lattice dislocation of the obtained catalysts, which can increase the surface free energy, thus reducing the activation energy and accelerating the electrochemical reaction kinetics. This work effectively combines a magnetic field with chemical corrosion and electrochemical energy, which offers a novel strategy for the large-scale development of environmentally friendly and superior electrocatalysts.

9.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999114

RESUMO

Molecular beam epitaxy (MBE) is a powerful tool in modern technologies, including electronic, optoelectronic, spintronic, and sensoric applications. The primary factor determining epitaxial heterostructure properties is the growth mode and the resulting atomic structure and microstructure. In this paper, we present a novel method for growing epitaxial layers and nanostructures with specific and optimized structural and magnetic properties by assisting the MBE process using electromagnetic and mechanical external stimuli: an electric field (EF), a magnetic field (MF), and a strain field (SF). The transmission of the external fields to the sample is realized using a system of specialized sample holders, advanced transfers, and dedicated manipulators. Examples of applications include the influence of MFs on the growth and anisotropy of epitaxial magnetite and iron films, the use of EFs for in situ resistivity measurements, the realization of in situ magneto-optic measurements, and the application of SFs to the structural modification of metal films on mica.

10.
Heliyon ; 10(12): e32813, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005921

RESUMO

Large-amplitude plasma wave is known to accelerate electrons to high energies. The electron energy gain mainly depends on plasma wave amplitude. In this paper, we investigate the excitation of large-amplitude plasma waves by laser beat-wave in an inhomogeneous plasma. The idea behind this work is to employ linear and radial plasma density profiles to enhance the plasma wave amplitude. PIC simulations are used to validate the numerical solution of the nonlinear wave equation in cylindrical dimensions through the finite difference method. Furthermore, the effects of the quadratic-radial plasma density profiles and magnetic field on the plasma wave excitation are investigated. The study shows that compared to the linear density profile of plasma, the plasma wave amplitude in the case of a linear-radial density profile is far more pronounced. For the linear-radial density profile, the plasma wave amplitude remains steady over greater distances of propagation compared to the linear density profile, resulting in reduced immediate damping effects. It can also be seen that the plasma wave amplitude is higher for the quadratic-radial than for the linear-radial density profiles. The effect of a longitudinal magnetic field on plasma wave amplitude is investigated. It can be seen that the plasma wave amplitude is increased by applying a magnetic field. This study may provide a way to enhance the plasma wave field for accelerating the electrons in laser-plasma accelerators.

11.
Biomed Phys Eng Express ; 10(5)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38981447

RESUMO

Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy.


Assuntos
Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Animais , Nanoestruturas , Magnetoterapia/métodos , Medicina de Precisão/métodos , Transtornos Mentais/terapia
12.
Sci Rep ; 14(1): 15165, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956434

RESUMO

This paper aims to study the natural convective magneto-hydrodynamic flow of fluid through vertical concentric annuli with iso-flux heating under the conditions of constant internal heat absorption and an induced magnetic field. By solving the set of dimensionless coupled governing equations, we were able to obtain exact expressions for the temperature field, velocity field, and induced magnetic field. We also managed to derive the formulas for skin friction, mass flux, and induced current density. We also examined the effects of non-dimensional parameters on skin friction and mass flux. For easy comprehension and interpretation, the results are provided graphically and in tabular form. The heat absorption parameter, the induced current density, the induced magnetic field, and velocity exhibit a negative trend as the Hartmann number (Ha) value increases. The induced magnetic field has the effect of raising both the induced current density and velocity profile. It is found that, when a fluid absorbs heat, the heat absorption parameter experiences reverse flow. For the heat-absorbing fluids, the radii ratio has the effect of increasing velocity, induced magnetic field, and induced current density. The numerical values of skin friction and mass flux at cylindrical walls increase (decrease) with increasing heat absorption parameter and generally it has decreasing tendency with increasing Hartmann number.

13.
Physiol Meas ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029494

RESUMO

The measurement of electromyography (EMG) signals with needle electrodes is widely used in clinical settings for diagnosing neuromuscular diseases. Patients experience pain during needle EMG testing. It is significant to develop alternative diagnostic modalities. This paper proposes a portable magnetomyography (MMG) measurement system for neuromuscular disease auxiliary diagnosis. Firstly, the design and operating principle of the system are introduced. The feasibility of using the system for auxiliary diagnosis of neuromuscular diseases is then studied. The magnetic signals and needle EMG signals of thirty subjects were collected and compared. It is found that the amplitude of muscle magnetic field signal increases during mild muscle contraction, and the signal magnitudes of the patients are smaller than those of normal subjects. The diseased muscles tested in the experiment can be distinguished from the normal muscles based on the signal amplitude, using a threshold value of 6 pT. The MMG diagnosis results align well with the needle EMG diagnosis. In addition, the MMG measurement indicates that there is a persistence of spontaneous activity in the diseased muscle. The experimental results demonstrate that it is feasible to auxiliary diagnose neuromuscular diseases using the portable MMG system, which offers the advantages of non-contact and painless measurements. After more in-depth, systematic, and quantitative research, the portable MMG could potentially be used for auxiliary diagnosis of neuromuscular diseases.

14.
Sci Rep ; 14(1): 16456, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013987

RESUMO

This manuscript addresses a significant research gap in the study by employing a mathematical model of photo thermoelastic wave propagation in a rotator semiconductor medium under the effect of a magnetic field and initial stress, as well as ramp-type heating. The considered model is formulated during the photothermal theory and in two-dimensional (2D) electronic-elastic deformation. The governing equations represent the interaction between the primary physical parameters throughout the process of photothermal transfer. Computational simulations are performed to determine the temperature, carrier density, displacement components, normal stress, and shear stress using the application of Lame's potential and normal mode analysis. Numerical calculations are carried out and graphically displayed for an isotropic semiconductor like silicon (Si) material. Furthermore, comparisons are made with the previous results obtained by the others, as well as in the presence and absence of magnetic field, rotation, and initial stress. The obtained results illustrate that the rotation, initial stress, magnetic field, and ramp-type heating parameter all have significant effects. This investigation provides valuable insights into the synergistic dynamics among a magnetization constituent, semiconducture structures, and wave propagation, enabling advancements in nuclear reactors' construction, operation, electrical circuits, and solar cells.

15.
Neuroscience ; 554: 128-136, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019392

RESUMO

Aftereffects of non-invasive brain stimulation techniques may be brain state-dependent. Either continuous theta-burst stimulation (cTBS) as transcranial static magnetic field stimulation (tSMS) reduce cortical excitability. Our objective was to explore the aftereffects of tSMS on a M1 previously stimulated with cTBS. The interaction effect of two inhibitory protocols on cortical excitability was tested on healthy volunteers (n = 20), in two different sessions. A first application cTBS was followed by real-tSMS in one session, or sham-tSMS in the other session. When intracortical inhibition was tested with paired-pulse transcranial magnetic stimulation, LICI (ie., long intracortical inhibition) increased, although the unconditioned motor-evoked potential (MEP) remained stable. These effects were observed in the whole sample of participants regardless of the type of static magnetic field stimulation (real or sham) applied after cTBS. Subsequently, we defined a group of good-responders to cTBS (n = 9) on whom the unconditioned MEP amplitude reduced after cTBS and found that application of real-tSMS (subsequent to cTBS) increased the unconditioned MEP. This MEP increase was not found when sham-tSMS followed cTBS. The interaction of tSMS with cTBS seems not to take place at inhibitory cortical interneurons tested by LICI, since LICI was not differently affected after real and sham tSMS. Our results indicate the existence of a process of homeostatic plasticity when tSMS is applied after cTBS. This work suggests that tSMS aftereffects arise at the synaptic level and supports further investigation into tSMS as a useful tool to restore pathological conditions with altered cortical excitability.

16.
Chem Biodivers ; : e202400984, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024491

RESUMO

Leucojum aestivum L. is a bulbous Amaryllidaceae family plant. A pot experiment was conducted to investigate the impact of three different magnetic field (MF) intensities [50, 100 and 150 militesla (mT)] with three different exposure durations (1, 3 and 7 days) on growth parameters, alkaloid levels (galanthamine and lycorine), non-enzymatic antioxidant activities (total phenol-flavonoid content and free radical scavenging activity), and enzymatic antioxidant activities [superoxide dismutase (SOD) and catalase (CAT)] compared with control (no MF) in the bulbs and leaves. Maximum bulb length was achieved with 150 mT MF application for 3 days. Galanthamine levels increased by 63% in the bulbs with 150 mT-7 days exposure and by 79.8% in the leaves with 50 MT-1 day exposure compared to the control. The leaves and bulbs with 100 mT exposure showed the greatest increases in lycorine concentrations (23.8% and 62.3% rises, respectively). MF exposures of 150 mT for 3 days gave the best radical scavenging activity and total phenol-flavonoid content. The highest alkaloid levels in the bulbs were associated with higher SOD and CAT activity generated by MF treatments.  This study revealed that the medicinal value and quantity of L. aestivum bulbs could be significantly increased with 150 mT MF intensity.

17.
Eur Radiol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844619

RESUMO

OBJECTIVES: Despite some existing studies on the safety of high static magnetic fields (SMFs), the effects of ultra-high SMFs above 20.0 T for embryonic development in early pregnancy are absent. The objective of this study is to evaluate the influence of 16.8-22.0 T SMF on the development of zebrafish embryos, which will provide important information for the future application of ultra-high field magnetic resonance imaging (MRI). METHODS: Two-hour exposure to homogenous (0 T/m) 22.0 T SMF, or 16.8 T SMFs with 123.25 T/m spatial gradient of opposite magnetic force directions was examined in the embryonic development of 200 zebrafish. Their body length, heart rate, spontaneous tail-wagging movement, hatching and survival rate, photomotor response, and visual motor response (VMR) were analyzed. RESULTS: Our results show that these ultra-high SMFs did not significantly affect the general development of zebrafish embryos, such as the body length or spontaneous tail-wagging movement. However, the hatching rate was reduced by the gradient SMFs (p < 0.05), but not the homogenous 22.0 T SMF. Moreover, although the zebrafish larva activities were differentially affected by these ultra-high SMFs (p < 0.05), the expression of several visual and neurodevelopmental genes (p < 0.05) was generally downregulated in the eyeball. CONCLUSIONS: Our findings suggest that exposure to ultra-high SMFs, especially the gradient SMFs, may have adverse effects on embryonic development, which should cause some attention to the future application of ultra-high field MRIs. CLINICAL RELEVANCE STATEMENT: As technology advances, it is conceivable that very strong magnetic fields may be adapted for use in medical imaging. Possible dangers associated with these higher Tesla fields need to be considered and evaluated prior to human use. KEY POINTS: Ultra-High static magnetic field may affect early embryonic development. High strength gradient static magnetic field exposure impacted zebrafish embryonic development. The application of very strong magnetic fields for MR technologies needs to be carefully evaluated.

18.
Neurosci Lett ; 836: 137878, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862088

RESUMO

Alzheimer's disease (AD) is an approaching, progressive public health crisis which presently lacks an effective treatment. Various non-invasive novel therapies like repetitive transcranial magnetic stimulation have shown potential to improve cognitive performance in AD patients. In the present study, the effect of extremely low intensity magnetic field (MF) stimulation on neurogenesis and cortical electrical activity was explored. Adult Wistar rats were divided into Sham, AD and AD + MF groups. Streptozotocin (STZ) was injected intracerebroventricularly, at a dose of 3 mg/kg body weight for developing AD model. The AD rats were then exposed to MF (17.96 µT) from 8th day of STZ treatment until 15th day, followed by cognitive assessments and electrocortical recording. In brain tissue samples, cresyl violet staining and BrdU immunohistochemistry were done. MF exposure, improved passive avoidance and recognition memory, attenuated neuronal degeneration and enhanced cell proliferation (BrdU positive cells) in comparison to AD rats. It also significantly restores delta wave power from frontal lobe. Our results suggest that early-stage MF exposure could be an asset for AD research and open new avenues in slowing down the progression of Alzheimer's disease.

19.
Materials (Basel) ; 17(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893934

RESUMO

The present work is aimed at studying the effects of the magnetorheological finishing process, using a low-frequency alternating magnetic field, on the finishing performance of 6063 aluminum alloy. The study investigates the influence of key excitation parameters such as current, frequency, excitation gap, and iron powder diameter on the material removal and surface roughness (Ra) of the finished workpiece by experiments. This study employs a single-factor experimental method, and the finish surface is analyzed by a Zigo non-contact white light interferometer. The magnetic field strength in the processing area increases with the increase in the excitation current and decreases with the increase in the excitation gap. When the current frequency is set to 1 Hz, the circulation and renewal of abrasives in the magnetic cluster is most sufficient, resulting in the optimal surface roughness value for the workpiece. According to the experimental results of the excitation parameters, more suitable process parameters were selected for a two-stage finishing experiment. The surface roughness of 6063 aluminum alloy was improved from 285 nm to 3.54 nm. Experimental results highlighted that the magnetorheological finishing using a low-frequency alternating magnetic field is a potential technique for obtaining nano-scale finishing of the 6063 aluminum alloy.

20.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894055

RESUMO

Ferromagnetic pipes are widely used in the oil and gas industry. They are subject to cracks due to corrosion, pressure, and fatigue. It is significant to detect cracks for the safety of pipes. A residual magnetic field testing (RMFT) system is developed for crack detection in ferromagnetic pipes. Based on this background, a detection probe based on an array of tunneling magneto-resistive (TMR) sensors and permanent magnets is exploited. The probe is able to partially magnetize the pipe wall and collect magnetic signals simultaneously. First, a theoretical analysis of RMFT is presented. The physics principle of RMFT is introduced, and a finite element model is built. In the finite element simulations, the effects of the crack length and depth on the RMFT signal are analyzed, and the signal characteristics are selected to represent the crack size. Next, the validated experiments are conducted to demonstrate the feasibility of the proposed RMFT method in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA