Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406464, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140781

RESUMO

The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field has not been examined, which hinders further applications. Here, the study demonstrates the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 × 1010 A m-2 at 300 K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, it is found that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252 mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. The work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices.

2.
Nano Lett ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132906

RESUMO

Probabilistic bits (p-bits) with thermal- and spin torque-induced nondeterministic magnetization switching are promising candidates for performing probabilistic computing. Previously reported spin torque p-bits include volatile low-energy barrier nanomagnets (LBNMs) with spontaneously fluctuating magnetizations and initialization-necessary nonvolatile magnets. However, initialization-free nonvolatile spin torque p-bits are still lacking. Here, we demonstrate moderately thermal stable spin-orbit torque (SOT) p-bits with non-consecutively deposited Pt//Pt/Co/Pt stacks. Backhopping-like (BH) magnetization switching with a wide range current-tunable probability of final up and down magnetization states from 0% to 100% was achieved, regardless of the initial magnetization state, which was attributed to the interplay of SOT and thermal contributions. Integer factorization using such BH-SOT p-bits in zero magnetic field was demonstrated at times that are significantly shorter than those of existing nonvolatile STT or volatile LBNMs p-bits. Our realization of initialization-free and magnetic field-free moderately thermally stable BH-SOT p-bits opens up a new perspective for probabilistic spintronic applications.

3.
Small ; : e2403881, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004854

RESUMO

Orbital angular momentum flow can be used to develop a low-dissipation electronic information device by manipulating the orbital current. However, efficiently generating and fully harnessing orbital currents is a formidable challenge. In this study, an approach is presented that induces a colossal orbital current by gradient oxidation in Pt/Ta to enhance spin-orbit torque (SOT) and achieve high-efficiency magnetization switching. The maximum efficiency of the SOT before and after the gradient oxidation of Ta is improved relative to that of Pt by ≈600 and 1200%, respectively. The large SOT originates from the colossal orbital current because of the orbital Rashba-Edelstein effect induced by the gradient oxidation of Ta. In addition, a large spin-to-charge conversion efficiency is observed in yttrium iron garnet/Pt/TaOx because of the inverse orbital Rashba-Edelstein effect. Harnessing the orbital current can help effectively minimize the critical current density of the current-induced magnetization switching to 2.26-1.08 × 106 A cm-2, marking a 12-fold reduction compared to that using Pt. This findings provide a new path for research on low-dissipation spin-orbit devices and improve the tunability of orbital current generation.

4.
Nano Lett ; 24(30): 9302-9310, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39017705

RESUMO

The ability to manipulate magnetic states by a low electric current represents a fundamental desire in spintronics. In recent years, two-dimensional van der Waals (vdW) magnetic materials have attracted an extensive amount of attention due to their appreciable spin-orbit torque effect. However, for most known vdW ferromagnets, their relatively low Curie temperatures (TC) limit their applications. Consequently, low-power vdW spintronic devices that can operate at room temperature are in great demand. In this research, we fabricate nanodevices based on a solitary thin flake of vdW ferromagnet Fe3GaTe2, in which we successfully achieve nonvolatile and highly efficient magnetization switching by small currents at room temperature. Notably, the switching current density and the switching power dissipation are as low as 1.7 × 105 A/cm2 and 1.6 × 1013 W/m3, respectively, with an external magnetic field of 80 Oe; both are much reduced compared to those of conventional magnet/heavy metal heterostructure devices and other vdW devices.

5.
ACS Appl Mater Interfaces ; 16(21): 27944-27951, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764370

RESUMO

Manipulating magnetization via power-efficient spin-orbit torque (SOT) has garnered significant attention in the field of spin-based memory and logic devices. However, the damping-like SOT efficiency (ξDL) in heavy metal (HM)/ferromagnetic metal (FM) bilayers is relatively small due to the strong spin dephasing accompanied by additional spin polarization decay. Furthermore, the perpendicular magnetic anisotropy (PMA) originating from the HM/FM interface is constrained by the thickness of FM, which is unfavorable for thermal stability in practical applications. Consequently, it is valuable to develop systems that not only exhibit large ξDL but also balance thermal stability. In this work, we designed antiferromagnetic-coupled [Co/Gd]N multilayers, where staggered Co and Gd magnetic moments effectively suppress the spin dephasing and additional spin polarization decay. The ordered Co-Gd arrangements along the out-of-plane direction provide bulk PMA, endowing Pt/[Co/Gd]N high thermal stability. The SOT of Pt/[Co/Gd]N was systematically studied with N, demonstrating a significantly large ξDL of up to 0.66. The ξDL of Pt/[Co/Gd]N is greater than those of Pt/Co and Pt/ferrimagnetic alloys. This significant enhancement relies on the effective suppression of spin dephasing in [Co/Gd]N. Our work highlights that the antiferromagnetic-coupled [Co/Gd]N multilayer is a promising candidate for low-consumption and high-density spintronic devices.

6.
Nano Lett ; 24(23): 6931-6938, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804717

RESUMO

Spin-orbit torque magnetic random access memory (SOT-MRAM) has great promise in high write speed and low power consumption. Mo can play a vital role in constructing a CoFeB/MgO-based MRAM cell because of its ability to enhance the perpendicular magnetic anisotropy (PMA), thermal tolerance, and tunneling magnetoresistance. However, Mo is often considered as a less favorable candidate among SOT materials because of its weak spin-orbit coupling. In this study, we experimentally investigate the SOT efficiencies in Mo/CoFeB/MgO heterostructures over a wide range of Mo thicknesses and temperature. Decent damping-like SOT efficiency |ξDL| = 0.015 ± 0.001 and field-like SOT efficiency |ξFL| = 0.050 ± 0.001 are found in amorphous Mo. The ξFL/ξDL ratio is greater than 3. Furthermore, efficient current-induced magnetization switching is demonstrated with the critical current density comparable with heavy metal Ir and W. Our work reveals new understanding and possibilities for Mo as both an SOT source component and PMA buffer layer in the implementation of SOT-MRAMs.

7.
ACS Appl Mater Interfaces ; 16(15): 19764-19770, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577833

RESUMO

Two-dimensional van der Waals (2D vdW) materials are widely used in spin-orbit torque (SOT) devices. Recent studies have demonstrated the low crystal symmetry and large spin Hall conductivity of 2D vdW ZrSe3, indicating its potential applications in low-power SOT devices. Here, we study the interfacial contribution of SOTs and current-induced magnetization switching in the ZrSe3/Py (Ni80Fe20) and ZrSe3/Cu/Py heterostructures. SOT efficiencies of samples are detected by the spin-torque ferromagnetic resonance (ST-FMR), and out-of-plane damping-like torque (τB) is observed. The ratio between τB and the field-like torque (τA) decreases from 0.175 to 0.138 when inserting 1 nm Cu at the interface and then drops to 0.001 when the thickness of Cu intercalation is 2 nm, indicating that Cu intercalation inhibits the τB component of SOT. Moreover, the SOT efficiency is increased from 3.05 to 5.21, which may be attributed to the Cu intercalation being beneficial to improve the interface between Py and ZrSe3. Theoretical calculation has shown that the Cu spacer can change the conductivity of ZrSe3 from semiconductor to conductor, thereby decreasing the Schottky barrier and increasing the transmission efficiency of the spin current. Furthermore, magneto-optical Kerr effect (MOKE) microscopy is employed to verify the current-driven magnetization switching in these structures. In comparison to the ZrSe3/Py bilayer, the critical current density of ZrSe3/Cu/Py is reduced when inserting 1 nm Cu, demonstrating the higher SOT efficiency and lower power consumption in ZrSe3/Cu/Py structures.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38661041

RESUMO

Current-induced spin-orbit torque (SOT) in a perpendicularly magnetized single layer has a strong potential to switch the magnetization using an extremely low current density, which is generally 2-3 orders of magnitude smaller than that required for conventional metal bilayer systems. However, an in-plane external magnetic field has to be applied to break the symmetry and achieve deterministic switching. To further enhance the high-density integration and accelerate the practical application of highly efficient SOT magnetic random-access memory (SOT-MRAM) devices, field-free SOT magnetization switching in a ferromagnetic single layer is strongly needed. In a spin-orbit ferromagnet (a ferromagnet with strong spin-orbit interaction) with crystal inversion asymmetry and a multi-domain structure, the internal Dzyaloshinskii-Moriya effective fields are considered to induce field-free switching. Here, combined with strong spin-orbit coupling and a tilted anisotropy axis induced by a nonuniform Mn distribution and a possible magnetocrystalline anisotropy resulting from a slight substrate tilting, we successfully achieve magnetization switching in a spin-orbit ferromagnet (Ga,Mn)As single layer by utilizing SOT without applying any external magnetic field. Our findings help to deeply elucidate the SOT switching mechanism and can advance the development of a highly efficient MRAM with better scalability.

9.
Nano Lett ; 24(17): 5093-5103, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578845

RESUMO

Recent advances in single-particle photothermal circular dichroism (PT CD) and photothermal magnetic circular dichroism (PT MCD) microscopy have shown strong promise for diverse applications in chirality and magnetism. Photothermal circular dichroism microscopy measures direct differential absorption of left- and right-circularly polarized light by a chiral nanoobject and thus can measure a pure circular dichroism signal, which is free from the contribution of circular birefringence and linear dichroism. Photothermal magnetic circular dichroism, which is based on the polar magneto-optical Kerr effect, can probe the magnetic properties of a single nanoparticle (of sizes down to 20 nm) optically. Single-particle measurements enable studies of the spatiotemporal heterogeneity of magnetism at the nanoscale. Both PT CD and PT MCD have already found applications in chiral plasmonics and magnetic nanomaterials. Most importantly, the advent of these microscopic techniques opens possibilities for many novel applications in biology and nanomaterial science.

10.
Nano Lett ; 24(9): 2743-2750, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393986

RESUMO

For energy-efficient magnetic memories, switching of perpendicular magnetization by spin-orbit torque (SOT) appears to be a promising solution. This SOT switching requires the assistance of an in-plane magnetic field to break the symmetry. Here, we demonstrate the field-free SOT switching of a perpendicularly magnetized thulium iron garnet (Tm3Fe5O12, TmIG). The polarity of the switching loops, clockwise or counterclockwise, is determined by the direction of the initial current pulses, in contrast with field-assisted switching where the polarity is controlled by the direction of the magnetic field. From Brillouin light scattering, we determined the Dzyaloshinskii-Moriya interaction (DMI) induced by the Pt-TmIG interface. We will discuss the possible origins of field-free switching and the roles of the interfacial DMI and cubic magnetic anisotropy of TmIG. This discussion is substantiated by magnetotransport, Kerr microscopy, and micromagnetic simulations. Our observation of field-free electrical switching of a magnetic insulator is an important milestone for low-power spintronic devices.

11.
Nano Lett ; 24(5): 1471-1476, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38216142

RESUMO

We study current-induced switching of the Néel vector in CoO/Pt bilayers to understand the underlying antiferromagnetic switching mechanism. Surprisingly, we find that for ultrathin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing these results to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the details of the reorientation of the Néel vector in ultrathin CoO(4 nm). This allows us to understand how opposite resistance changes can result from a thermomagnetoelastic switching mechanism. Importantly, our spatially resolved imaging shows that regions where the current pulses are applied and regions further away exhibit different switched spin structures, which can be explained by a spin-orbit torque-based switching mechanism that can dominate in very thin films.

12.
Nano Lett ; 24(3): 822-828, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263950

RESUMO

Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)2Te3 with 2D FM Fe3GeTe2 (FGT). Harmonic magnetotransport measurements reveal that the SOT efficiency exhibits a non-monotonic temperature dependence and experiences a substantial enhancement with a reduction of the FGT thickness to 2 monolayers. Our study further demonstrates that the magnetization of ultrathin FGT films can be switched with a current density of Jc ∼ 1010 A/m2, with minimal device-to-device variations compared to previous investigations involving traditional FMs.

13.
Nano Lett ; 24(2): 649-656, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165119

RESUMO

Recent theoretical and experimental studies of the interlayer Dzyaloshinskii-Moriya interaction (DMI) have sparked great interest in its implementation into practical magnetic random-access memory (MRAM) devices, due to its capability to mediate long-range chiral spin textures. So far, experimental reports focused on the observation of interlayer DMI, leaving the development of strategies to control interlayer DMI's magnitude unaddressed. Here, we introduce an azimuthal symmetry engineering protocol capable of additive/subtractive tuning of interlayer DMI through the control of wedge deposition of separate layers and demonstrate its capability to mediate field-free spin-orbit torque (SOT) magnetization switching in both orthogonally magnetized and synthetic antiferromagnetically coupled systems. Furthermore, we showcase that the spatial inhomogeneity brought about by wedge deposition can be suppressed by specific azimuthal engineering design, ideal for practical implementation. Our findings provide guidelines for effective manipulations of interlayer DMI strength, beneficial for the future design of SOT-MRAM or other spintronic devices utilizing interlayer DMI.

14.
ACS Nano ; 18(1): 680-690, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109771

RESUMO

Topological insulators (TIs) have shown promise as a spin-generating layer to switch the magnetization state of ferromagnets via spin-orbit torque (SOT) due to charge-to-spin conversion efficiency of the TI surface states that arises from spin-momentum locking. However, when TIs are interfaced with conventional bulk ferromagnetic metals, the combination of charge transfer and hybridization can potentially destroy the spin texture and hamper the possibility of accessing the TI surface states. Here, we fabricate an all van der Waals (vdW) heterostructure consisting of molecular beam epitaxy grown bulk-insulating Bi2Se3 and exfoliated 2D metallic ferromagnet Fe3GeTe2 (FGT) with perpendicular anisotropy. By detecting the magnetization state of the FGT via anomalous Hall effect and magneto-optical Kerr effect measurements, we determine the critical switching current density for magnetization switching to be Jc ≈ 1.2 × 106 A/cm2, the lowest reported for the switching of a perpendicular anisotropy ferromagnet using Bi2Se3. From second harmonic Hall measurements, we further determine the SOT efficiency (ξDL) to be in the range of 1.8 ± 0.3 and 1.4 ± 0.08 between 5 and 150 K, comparable to the highest values reported for Bi2Se3. Our density functional theory calculations find that the weak interlayer interactions at the Bi2Se3/FGT interface lead to a weakened dipole at the interface and suppress the proximity induced magnetic moment on Bi2Se3. This enables direct access to the TI surface states contributed by the first quintuple layer, where the spins are singly degenerate with significant net in-plane spin polarization. Our results highlight the clear advantage of all-vdW heterostructures with weak interlayer interactions that can enhance SOT efficiency and minimize critical current density, an important step toward realizing next generation low-power nonvolatile memory and spintronic devices.

15.
ACS Nano ; 17(23): 23626-23636, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988035

RESUMO

Spin-orbit coupling (SOC) is the interaction between electron's spin and orbital motion, which could realize a charge-to-spin current conversion and enable an innovative method to switch the magnetization by spin-orbit torque (SOT). Varied techniques have been developed to manipulate and improve the SOT, but the role of the orbit degree of freedom, which should have a crucial bearing on the SOC and SOT, is still confusing. Here, we find that the charge-to-spin current conversion and SOT in W3O8-δ/(La, Sr)MnO3 could be produced or eliminated by ionic liquid gating. Through tuning the preferential occupancy of Mn/W-d electrons from the in-plane (dx2-y2) to out-of-plane (d3z2-r2) orbit, the SOT damping-like field efficiency is nearly doubled due to the enhanced spin Hall effect and interfacial Rashba-Edelstein effect. These findings not only offer intriguing opportunities to control the SOT for high-efficient spintronic devices but also could be a fundamental step toward spin-orbitronics in the future.

16.
Nano Lett ; 23(23): 11323-11329, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019659

RESUMO

The orbital angular momentum (OAM) generation as well as its associated orbital torque is currently a matter of great interest in spin-orbitronics and is receiving increasing attention. In particular, recent theoretical work predicts that the oxidized light metal Cu can serve as an efficient OAM generator through its surface orbital Rashba effect. Here, for the first time, the crucial current-induced magnetic-field-free in-plane magnetization reversal is experimentally demonstrated in CoFeB/CuOx bilayers without any heavy elements. We show that the critical current density can be comparable to that of strong spin-orbit coupling systems with heavy metals (Pt and Ta) and that the magnetization reversal mechanism is governed by coherent rotation in the grains through the second-harmonic and magneto-optical Kerr effect measurements. Our results indicate that light metal oxides can play an equally important role as heavy metals in magnetization reversal, broadening the choice of materials for engineering spintronic devices.

17.
Sci Bull (Beijing) ; 68(22): 2743-2749, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37872061

RESUMO

The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe2/Fe3GaTe2/BN/Fe3GaTe2 heterostructures. The data reading process relies on the tunnel magnetoresistance of Fe3GaTe2/BN/Fe3GaTe2. The data writing is achieved through current induced polarization of orbital magnetic moments in WTe2, which exert torques on Fe3GaTe2, known as the orbit-transfer torque (OTT) effect. In contrast to the conventional reliance on spin moments in spin-transfer torque and spin-orbit torque, the OTT effect leverages the natural out-of-plane orbital moments, facilitating field-free perpendicular magnetization switching through interface currents. Our results indicate that the emerging OTT-MRAM is promising for low-power, high-performance memory applications.

18.
ACS Appl Mater Interfaces ; 15(42): 49902-49910, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815887

RESUMO

Electrically generated spin-orbit torque (SOT) has emerged as a powerful pathway to control magnetization for spintronic applications including memory, logic, and neurocomputing. However, the requirement of external magnetic fields, together with the ultrahigh current density, is the main obstacle for practical SOT devices. In this paper, we report that the field-free SOT-driven magnetization switching can be successfully realized by interfacial ion absorption in perpendicular Ta/CoFeB/MgO multilayers. Besides, the tunable SOT efficiency exhibits a strong dependence on interfacial Ti insertion thicknesses. Polarized neutron reflection measurements demonstrate the existence of canted magnetization with Ti inserted, which leads to deterministic magnetization switching. In addition, interfacial characterization and first-principles calculations reveal that B absorption by the Ti layer is the main cause behind the enhanced interfacial transparency, which determines the tunable SOT efficiency. Our findings highlight an attractive scheme to a purely electric control spin configuration, enabling innovative designs for SOT-based spintronics via interfacial engineering.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37874631

RESUMO

Spin-orbit torque (SOT)-induced magnetization switching in ferrimagnetic materials is promising for application in a new generation of information storage devices. Here, we demonstrate SOT-induced field-free magnetization switching of the perpendicularly magnetized CoTb ferrimagnet layer in the IrMn/CoTb bilayer, in which the in-plane magnetic inversion symmetry is broken by a spontaneous in-plane exchange bias (IEB) established by isothermal crystallization of the IrMn layer. We obtain a significant SOT effective field acting on the CoTb layer and a large effective spin Hall angle in this system, derived by the second harmonic voltage measurement method. Moreover, the IrMn/CoTb bilayer demonstrates multistate magnetic switching behavior with different amplitudes of current pulses at zero field, which can mimic the synaptic weight updates in the neuromorphic network. These findings make the IrMn/CoTb bilayer with spontaneous IEB a promising candidate for potential applications in multilevel storage and neuromorphic computing.

20.
ACS Appl Mater Interfaces ; 15(34): 40792-40798, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37595054

RESUMO

Nano- and microstructures based on ferrimagnets can demonstrate high efficiency and dynamics of current-induced magnetization switching combined with high stability of spin textures such as bubble domains and skyrmions, which are of practical importance for the development of spintronics and spin-orbitronics. This set of features is usually associated with magnetic momentum or angular momentum compensation states. Here, we experimentally show that the compensation state can be realized locally using nonuniform Joule heating. This effect is observed in the variable-width current guide made of the ferrimagnetic W/Co76Tb24/Ru thin films, where the position of a region heated to the compensation temperature depends linearly on the current pulse amplitude. This approach makes it possible to observe the simultaneous coexistence of Co-dominant and Tb-dominant regions, where current pulses induce spin-orbit torques in opposite directions, leading to local magnetization switching. It is found that the position of a Néel domain wall constraining the switched region lies in the vicinity of the coordinate corresponding to the compensation point but does not coincide with it due to high mobility under the action of spin current. Our findings open an alternative approach for engineering of ferrimagnetic nanodevices with advanced properties for future applications in spintronics, spin-orbitronics, and nanoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA