Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.290
Filtrar
1.
ArXiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38947935

RESUMO

Background noise in many fields such as medical imaging poses significant challenges for accurate diagnosis, prompting the development of denoising algorithms. Traditional methodologies, however, often struggle to address the complexities of noisy environments in high dimensional imaging systems. This paper introduces a novel quantum-inspired approach for image denoising, drawing upon principles of quantum and condensed matter physics. Our approach views medical images as amorphous structures akin to those found in condensed matter physics and we propose an algorithm that incorporates the concept of mode resolved localization directly into the denoising process. Notably, our approach eliminates the need for hyperparameter tuning. The proposed method is a standalone algorithm with minimal manual intervention, demonstrating its potential to use quantum-based techniques in classical signal denoising. Through numerical validation, we showcase the effectiveness of our approach in addressing noise-related challenges in imaging and especially medical imaging, underscoring its relevance for possible quantum computing applications.

2.
Sci Rep ; 14(1): 15773, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982212

RESUMO

We carried out uniaxial compression tests on brittle red sandstone with different heights. The test results show that the uniaxial compressive strength of rock sample increases first and then tends to be stable with the increase of the size, which is approximately stable between 75 and 81 MPa. Both elastic energy and dissipated energy increase with the increase of rock sample size. In order to further analyze the mechanism behind these phenomena, we combined advanced numerical simulation and theoretical analysis to explain these phenomena, and systematically analyzed the end face effect as one of the key factors affecting the uniaxial compression characteristics of brittle red sandstone for the first time. Small sized rock samples are very sensitive to end effect. The middle of the large sized rock samples is in a uniform compression state, and the effect of end effect is weakend. When there are rigid pads at both ends of the rock sample, there is an obvious elastic vertebral body during the loading process of the rock sample. The bearing capacity of rock samples with rigid pads is greater than that of rock samples without rigid pads, and the energy released during instantaneous failure of rock samples without rigid pads is greater than that of rock samples with rigid pads. The findings of this paper make a valuable contribution to establishing optimal study sample sizes and advancing the utilization of laboratory test mechanics parameters in engineering applications.

3.
Ann Biomed Eng ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949730

RESUMO

PURPOSE: Through their contractile and synthetic capacity, vascular smooth muscle cells (VSMCs) can regulate the stiffness and resistance of the circulation. To model the contraction of blood vessels, an active stress component can be added to the (passive) Cauchy stress tensor. Different constitutive formulations have been proposed to describe this active stress component. Notably, however, measuring biomechanical behaviour of contracted blood vessels ex vivo presents several experimental challenges, which complicate the acquisition of comprehensive datasets to inform complex active stress models. In this work, we examine formulations for use with limited experimental contraction data as well as those developed to capture more comprehensive datasets. METHODS: First, we prove analytically that a subset of constitutive active stress formulations exhibits unstable behaviours (i.e., a non-unique diameter solution for a given pressure) in certain parameter ranges, particularly for large contractile deformations. Second, using experimental literature data, we present two case studies where these formulations are used to capture the contractile response of VSMCs in the presence of (1) limited and (2) extensive contraction data. RESULTS: We show how limited contraction data complicates selecting an appropriate active stress model for vascular applications, potentially resulting in unrealistic modelled behaviours. CONCLUSION: Our data provide a useful reference for selecting an active stress model which balances the trade-off between accuracy and available biomechanical information. Whilst complex physiologically motivated models' superior accuracy is recommended whenever active biomechanics can be extensively characterised experimentally, a constant 2nd Piola-Kirchhoff active stress model balances well accuracy and applicability with sparse contractile data.

4.
Egypt Heart J ; 76(1): 81, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955907

RESUMO

BACKGROUND: Bifurcation lesions are prevalent amongst patients with symptomatic coronary artery disease subjected to percutaneous coronary intervention (PCI). Recent consensus commends a conservative (provisional) approach when managing the side branch. Here, the aim was to explore the immediate impact of different bifurcation techniques (one stent and two stent strategies) on left ventricular LV) myocardial functions using speckle tracking echocardiography in patients subjected to elective PCI. Sixty two consecutive patients diagnosed with coronary bifurcation lesion (CBL) were enrolled. Patients were categorized into: one-stent strategy (Provisional group, n = 44) and a two-stent strategy (TAP, DK crush, or Culotte technique, n = 18), based on the coronary bifurcation site, angle, side branch diameter and Medina classification. LVEF%, regional and global longitudinal strain (GLS), and E/E' were measured before and within 24 h post PCI. RESULTS: In both provisional and 2- stent technique, the mitral inflow velocities and mitral annular velocities showed improvement with significant reduction in E/e' (P < 0.03 and P < 0.001) respectively while LVEF% did not change. There were no significant changes in any other echo parameters post PCI. In provisional group, there were significant improvements in LAD (P < 0.001), RCA (P < 0.01) territories and GLS (P < 0.01). Δ LAD was expressively higher (34.5%) compared with Δ LCX (9.6%) and ΔRCA (25.4%), P < 0.001, P < 0.01 respectively. In the 2-stent technique group, there were significant improvements in peak longitudinal strain of LAD territory (P < 0.01), RCA territory (P < 0.01) and GLS (P < 0.01) respectively. Δ LAD territory was significantly higher in provisional group in comparison with the 2- stent technique group. Δ GLS was correlated inversely to Gensini score in provisional group and to the number of vessel diseased in 2-stent technique group. CONCLUSION: PCI of the bifurcation lesion positively impact myocardial function. Both bifurcation techniques improve LV mechanical properties using 2D strain imaging while LV EF% remains unchanged.

5.
Sci Rep ; 14(1): 15222, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956233

RESUMO

The critical value of rock failure is determined by irreversible deformation (inelastic deformation, damage, and other internal dissipation) processes and external conditions before rock failure. Nevertheless, a thorough explanation of the mechanism causing cracks in rock material has not yet been provided. The strain energy theory is applied in this work to assess the initiation of rock cracks and investigate the relationship between energy digestion and rock strength. Firstly, the uniaxial compression test was conducted on sandstone samples under quasi-static loading conditions and the results of energy evolution, non-linear cumulative digestion, and stored ultimate energy were obtained. Then, a novel algorithm for assessing the initiation of rock cracks has been put forth. The concept of energy digestion index (EDI), which is the ratio of digested energy over the external loading energy, has been developed to characterize the energy absorption capacity of rock material. The result shows a relationship between the maximum growth rate of energy digestion and the increasing rate of variable elasticity modulus and crack initiation. The mechanical characteristics and peak strength of the rock material are negatively correlated with the EDI. By monitoring the digested energy status, an evaluation of the residual strength is introduced based on the relationships, which will initiate further research into in-situ monitoring and failure prediction.

6.
Biomater Adv ; 163: 213938, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959650

RESUMO

Endothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations. The aged and senescent phenotypes were more fragile to stretch-induced damage. Prominent damage was detected by immunofluorescence and scanning electron microscopy as intercellular and intracellular void formation. Damage increased proportionally to the applied level of deformation and, for the aged and senescent phenotype, induced significant detachment of cells at lower levels of stretch compared to the young counterpart. Based on the phenotypic difference in cell-substrate adhesion of senescent cells indicating more mature focal adhesions, a discrete network model of endothelial cells being stretched was developed. The model showed that the more affine deformation of senescent cells increased their intracellular energy, thus enhancing the tendency for cellular damage and impending detachment. Next to quantifying for the first-time critical levels of endothelial stretch, the present results indicate that young cells are more resilient to deformation and that the fragility of senescent cells may be associated with their stronger adhesion to the substrate.

7.
Bone ; : 117190, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960297

RESUMO

This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38958878

RESUMO

Cardiac magnetic resonance (CMR) feature-tracking (FT) has an important diagnostic role in non-ischemic dilated cardiomyopathy (NIDCM). To date, the relationship between whole-heart myocardial mechanics by CMR and early primary outcomes in NIDCM has not been elucidated. patients with NIDCM were eligible for this study. CMR-FT was used to analyze whole-heart myocardial mechanics. The primary outcomes were a composite of heart failure (HF) death, heart transplantation (HT), and hospitalization for HF worsening (WHF) after 1-year since diagnosis. 98 patients were included. During a 1-year follow-up, a worse prognosis occurred in 32 patients (30 hospitalizations for WHF, 8 deaths, and 3 HT). The left ventricular (LV) global longitudinal systolic strain (GLS), left ventricular global circumferential strain (LV GCS), strains of right ventricle and both atria were significantly reduced in patients with events vs. those without (GLS - 8.0 ± 3.4 vs. - 12.1 ± 4.5, p < 0.001; GCS - 13.0 ± 6.4 vs. - 18.3 ± 7.1, p < 0.001; right ventricular (RV) GLS - 12.1 ± 4.9 vs. - 17.4 ± 6.4, p < 0.001; left atrial longitudinal strain 7.5 ± 3.8 vs. 15.1 ± 12.3, p < 0.001; right atrial longitudinal strain 11.0 ± 6.7 vs. 17.2 ± 8.0, p < 0.001). Left ventricular ejection fraction (LVEF) was significantly higher in patients with better prognosis (22.7 ± 8.7 vs. 33.56 ± 10.4, p < 0.001). Multivariate regression analysis revealed LV GLS as an independent predictor of a worse prognosis (OR 0.787, CI 95% 0.697-0.890, p < 0.001). reduction of LV GLS showed the strongest predictive value for the composite outcome of WHF, HT, and HF death.

9.
Front Pharmacol ; 15: 1331237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953106

RESUMO

This article forms part of a series on "openness," "non-linearity," and "embodied-health" in the post-physical, informational (virtual) era of society. This is vital given that the threats posed by advances in artificial intelligence call for a holistic, embodied approach. Typically, health is separated into different categories, for example, (psycho)mental health, biological/bodily health, genetic health, environmental health, or reproductive health. However, this separation only serves to undermine health; there can be no separation of health into subgroups (psychosomatics, for example). Embodied health contains no false divisions and relies on "optimism" as the key framing value. Optimism is only achieved through the mechanism/enabling condition of openness. Openness is vital to secure the embodied health for individuals and societies. Optimism demands that persons become active participants within their own lives and are not mere blank slates, painted in the colors of physical determinism (thus a move away from nihilism-which is the annihilation of freedom/autonomy/quality). To build an account of embodied health, the following themes/aims are analyzed, built, and validated: (1) a modern re-interpretation and validation of German idealism (the crux of many legal-ethical systems) and Freud; (2) ascertaining the bounded rationality and conceptual semantics of openness (which underlies thermodynamics, psychosocial relations, individual autonomy, ethics, and as being a central constitutional governmental value for many regulatory systems); (3) the link between openness and societal/individual embodied health, freedom, and autonomy; (4) securing the role of individualism/subjectivity in constituting openness; (5) the vital role of nonlinear dynamics in securing optimism and embodied health; (6) validation of arguments using the methodological scientific value of invariance (generalization value) by drawing evidence from (i) information and computer sciences, (ii) quantum theory, and (iii) bio-genetic evolutionary evidence; and (7) a validation and promotion of the inalienable role of theoretic philosophy in constituting embodied health, and how modern society denigrates embodied health, by misconstruing and undermining theoretics. Thus, this paper provides and defends an up-to-date non-physical account of embodied health by creating a psycho-physical-biological-computational-philosophical construction. Thus, this paper also brings invaluable coherence to legal and ethical debates on points of technicality from the empirical sciences, demonstrating that each field is saying the same thing.

10.
J R Soc Interface ; 21(216): 20240141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955227

RESUMO

Natural swimmers and flyers can fully recover from catastrophic propulsor damage by altering stroke mechanics: some fish can lose even 76% of their propulsive surface without loss of thrust. We consider applying these principles to enable robotic flapping propulsors to autonomously repair functionality. However, direct transference of these alterations from an organism to a robotic flapping propulsor may be suboptimal owing to irrelevant evolutionary pressures. Instead, we use machine learning techniques to compare these alterations with those optimal for a robotic system. We implement an online artificial evolution with hardware-in-the-loop, performing experimental evaluations with a flexible plate. To recoup thrust, the learned strategy increased amplitude, frequency and angle of attack (AOA) amplitude, and phase-shifted AOA by approximately 110°. Only amplitude increase is reported by most fish literature. When recovering side force, we find that force direction is correlated with AOA. No clear amplitude or frequency trend is found, whereas frequency increases in most insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage may not align with natural swimmers and flyers.


Assuntos
Robótica , Animais , Peixes/fisiologia , Natação , Fenômenos Biomecânicos , Modelos Biológicos , Insetos/fisiologia
11.
J Mol Cell Cardiol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019395

RESUMO

A better understanding of the underlying pathomechanisms of diastolic dysfunction is crucial for the development of targeted therapeutic options with the aim to increase the patients' quality of life. In order to shed light on the processes involved, suitable models are required. Here, effects of endothelin-1 (ET-1) treatment on cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were investigated. While it is well established, that ET-1 treatment induces hypertrophy in cardiomyocytes, resulting changes in cell mechanics and contractile behavior with focus on relaxation have not been examined before. Cardiomyocytes were treated with 10 nM of ET-1 for 24 h and 48 h, respectively. Hypertrophy was confirmed by real-time deformability cytometry (RT-DC) which was also used to assess the mechanical properties of cardiomyocytes. For investigation of the contractile behavior, 24 h phase contrast video microscopy was applied. To get a deeper insight into changes on the molecular biological level, gene expression analysis was performed using the NanoString nCounter® cardiovascular disease panel. Besides an increased cell size, ET-1 treated cardiomyocytes are stiffer and show an impaired relaxation. Gene expression patterns in ET-1 treated hiPSC derived cardiomyocytes showed that pathways associated with cardiovascular diseases, cardiac hypertrophy and extracellular matrix were upregulated while those associated with fatty acid metabolism were downregulated. We conclude that alterations in cardiomyocytes after ET-1 treatment go far beyond hypertrophy and represent a useful model for diastolic dysfunction.

12.
Lung ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020115

RESUMO

PURPOSE: Air trapping, often attested in humans by elevated residual volume (RV) and ratio of RV on total lung capacity (RV/TLC), is frequently observed in asthma. Confirming these alterations in experimental asthma would be important for translational purposes. Herein, lung volumes were investigated in a mouse model of pulmonary allergic inflammation. METHODS: Eight- to 10-week-old male C57BL/6 and BALB/c mice were exposed once daily to intranasal house dust mite (HDM) for 10 consecutive days. All readouts were measured 24 h after the last exposure. Lung volumes were assessed with the flexiVent using a new automated method consisting of degassing the lungs followed by a full-range pressure-volume maneuver. The weight and the volume of the lungs were also measured ex vivo and a lobe was further processed for histological analyses. RESULTS: HDM exposure led to tissue infiltration with inflammatory cells, goblet cell hyperplasia, thickening of the airway epithelium, and elevated ex vivo lung weight and volume. It also decreased TLC and vital capacity but without affecting RV and RV/TLC. These observations were similar between the two mouse strains. CONCLUSION: Alterations of lung volumes in a murine model of pulmonary allergic inflammation are inconsistent with observations made in human asthma. These discrepancies reflect the different means whereby lung volumes are measured between species. The invasive method used herein enables RV to be measured more precisely and without the confounding effect of air trapping, suggesting that changes in RV and RV/TLC using this method in mice should be interpreted differently than in humans.

13.
World J Clin Cases ; 12(20): 4166-4173, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39015892

RESUMO

BACKGROUND: Severe pneumonia is a common severe respiratory infection worldwide, and its treatment is challenging, especially for patients in the intensive care unit (ICU). AIM: To explore the effect of communication and collaboration between nursing teams on the treatment outcomes of patients with severe pneumonia in ICU. METHODS: We retrospectively analyzed 60 patients with severe pneumonia who were treated at the ICU of the hospital between January 1, 2021 and December 31, 2023. We compared and analyzed the respiratory mechanical indexes [airway resistance (Raw), mean airway pressure (mPaw), peak pressure (PIP)], blood gas analysis indexes (arterial oxygen saturation, arterial oxygen partial pressure, and oxygenation index), and serum inflammatory factor levels [C-reactive protein (CRP), procalcitonin (PCT), cortisol (COR), and high mobility group protein B1 (HMGB1)] of all patients before and after treatment. RESULTS: Before treatment, there was no significant difference in respiratory mechanics index and blood gas analysis index between 2 groups (P > 0.05). However, after treatment, the respiratory mechanical indexes of patients in both groups were significantly improved, and the improvement of Raw, mPaw, plateau pressure, PIP and other indexes in the combined group after communication and collaboration with the nursing team was significantly better than that in the single care group (P < 0.05). The serum CRP and PCT levels of patients were significantly decreased, and the difference was statistically significant compared with that of nursing group alone (P < 0.05). The levels of serum COR and HMGB1 before and after treatment were also significantly decreased between the two groups. CONCLUSION: The communication and collaboration of the nursing team have a significant positive impact on respiratory mechanics indicators, blood gas analysis indicators and serum inflammatory factor levels in the treatment of severe pneumonia patients in ICU.

14.
Adv Healthc Mater ; : e2400941, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967294

RESUMO

Damage and repair are recurring processes in tissues, with fibroblasts playing key roles by remodeling extracellular matrices (ECM) through protein synthesis, proteolysis, and cell contractility. Dysregulation of fibroblasts can lead to fibrosis and tissue damage, as seen in idiopathic pulmonary fibrosis (IPF). In advanced IPF, tissue damage manifests as honeycombing, or voids in the lungs. This study explores how transforming growth factor-beta (TGF-ß), a crucial factor in IPF, induces lung fibroblast spheroids to create voids in reconstituted collagen through proteolysis and cell contractility, a process is termed as hole formation. These voids reduce when proteases are blocked. Spheroids mimic fibroblast foci observed in IPF. Results indicate that cell contractility mediates tissue opening by stretching fractures in the collagen meshwork. Matrix metalloproteinases (MMPs), including MMP1 and MT1-MMP, are essential for hole formation, with invadopodia playing a significant role. Blocking MMPs reduces hole size and promotes wound healing. This study shows how TGF-ß induces excessive tissue destruction and how blocking proteolysis can reverse damage, offering insights into IPF pathology and potential therapeutic interventions.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38970736

RESUMO

Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is especially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids are a key requirement in any effective in vitro TBI model. The spheroids' shape and size, however, make mechanically loading them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate the spheroids' strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration and development of TBI models.

16.
ACS Nano ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38978500

RESUMO

The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38980581

RESUMO

The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.

18.
Respir Care ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013568

RESUMO

BACKGROUND: PEEP is a cornerstone treatment for children with pediatric ARDS. Unfortunately, its titration is often performed solely by evaluating oxygen saturation, which can lead to inadequate PEEP level settings and consequent adverse effects. This study aimed to assess the impact of increasing PEEP on hemodynamics, respiratory system mechanics, and oxygenation in children with ARDS. METHODS: Children receiving mechanical ventilation and on pressure-controlled volume-guaranteed mode were prospectively assessed for inclusion. PEEP was sequentially changed to 5, 12, 10, 8 cm H2O, and again to 5 cm H2O. After 10 min at each PEEP level, hemodynamic, ventilatory, and oxygenation variables were collected. RESULTS: A total of 31 subjects were included, with median age and weight of 6 months and 6.3 kg, respectively. The main reasons for pediatric ICU admission were respiratory failure caused by acute viral bronchiolitis (45%) and community-acquired pneumonia (32%). Most subjects had mild or moderate ARDS (45% and 42%, respectively), with a median (interquartile range) oxygenation index of 8.4 (5.8-12.7). Oxygen saturation improved significantly when PEEP was increased. However, although no significant changes in blood pressure were observed, the median cardiac index at PEEP of 12 cm H2O was significantly lower than that observed at any other PEEP level (P = .001). Fourteen participants (45%) experienced a reduction in cardiac index of > 10% when PEEP was increased to 12 cm H2O. Also, the estimated oxygen delivery was significantly lower, at 12 cm H2O PEEP. Finally, respiratory system compliance significantly reduced when PEEP was increased. At a PEEP of 12 cm H2O, static compliance had a median reduction of 25% in relation to the initial assessment (PEEP of 5 cm H2O). CONCLUSIONS: Although it may improve arterial oxygen saturation, inappropriately high PEEP levels may reduce cardiac output, oxygen delivery, and respiratory system compliance in pediatric subjects with ARDS with low potential for lung recruitability.

19.
Sci Rep ; 14(1): 16420, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013914

RESUMO

This study retrieves some novel exact solutions to the family of 3D space-time fractional Wazwaz-Benjamin-Bona-Mahony (WBBM) equations in the context of diverse nonlinear physical phenomena resulting from water wave mechanics. The family of WBBM equations is transformed for this purpose using a space and time fractional transformation into an ordinary differential equation (ODE). The ODE then uses a strong method, namely the Unified Method. Consequently, lump solutions, dark-bright soliton, singular and multiple soliton solutions, and periodic solutions are investigated. The disparities between the current study's conclusions and previously acquired solutions via other approaches are examined. All wave solutions produced are determined to be novel in terms of fractionality, unrestricted parameters, and implemented technique sense. The impact of unrestricted parameters and fractionality on the obtained solutions are visually presented, along with physical explanations. It is observed that the wave portents are varied with the increase of unrestricted parameters as well as fractionality. We dynamically showed that the appropriate transformation and the applied Unified approach more proficient in the study of water wave dynamics and might be used in future researches to clarify the many physical phenomena. The novelty of this work validate that the proposed method seem simple and useful tools for obtaining the solutions in PDEs and it is expected to use in mathematical physics and optical engineering.

20.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000782

RESUMO

Increasing recycled plastic content in cars to 25% by 2030 is one of the key measures for decarbonizing the automotive industry defined by the European Commission. This should include the recovery of plastics from end-of-life vehicles (ELVs), but such materials are hardly used in compounds today. To close the knowledge gap, two ELV recyclate grades largely based on bumper recycling were analyzed in comparison to a packaging-based post-consumer recyclate (PCR). The composition data were used to design polypropylene (PP) compounds for automotive applications with virgin base material and mineral reinforcement, which were characterized in relation to a commercial virgin-based compound. A compound with a 40 wt.-% ELV-based bumper recyclate can exceed one with just a 25 wt.-% packaging-based recyclate in terms of stiffness/impact balance. While the virgin reference can nearly be matched regarding mechanics, the flowability is not reached by any of the PCR compounds, making further development work necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...