Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.825
Filtrar
1.
Front Cell Dev Biol ; 12: 1431690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129787

RESUMO

The cell has multiple mechanisms for sensing and responding to dynamic changes in the mechanical environment. In the process, intracellular signaling is activated to modulate gene expression. Recent studies have shown that multifunctional signaling molecules that link intracellular force and gene expression are important for understanding cellular functions in the mechanical environment. This review discusses recent studies on one of the mechanotransducers, Four-and-a-half LIM domains 2 (FHL2), which localizes to focal adhesions (FAs), actin cytoskeleton, and nucleus. FHL2 localizes to FAs and the actin cytoskeleton in the cell on stiff substrate. In this situation, intracellular tension of F-actin by Myosin II is critical for FHL2 localization to FAs and actin stress fibers. In the case, a conserved phenylalanine in each LIM domain is responsible for its localization to F-actin. On the other hand, lower tension of F-actin in the cell on a soft substrate causes FHL2 to be released into the cytoplasm, resulting in its localization in the nucleus. At the molecular level, phosphorylation of specific tyrosine in FHL2 by FAK, non-receptor tyrosine kinase, is critical to nuclear localization. Finally, by binding to transcription factors, FHL2 modulates gene expression for cell proliferation as a transcriptional co-factor. Thus, FHL2 is involved in mechano-sensing and -transduction in the cell in a mechanical environment.

2.
Methods Mol Biol ; 2831: 251-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134855

RESUMO

Growth cone-dependent outgrowth of neuronal processes is essential for the development, plasticity, and regenerative capacity of the nervous system. This process involves the attachment of the growth cone to the substrate and the cyclical engagement/disengagement of the molecular clutch at the sites of adhesive contact. In this chapter, we describe protocols for traction force microscopy, measurement of F-actin retrograde flow velocities, and the assessment of adhesive point contacts by immunofluorescence. These complementary techniques collectively facilitate investigations into the regulation of the molecular clutch in neuronal growth cones.


Assuntos
Actinas , Cones de Crescimento , Cones de Crescimento/metabolismo , Cones de Crescimento/fisiologia , Actinas/metabolismo , Animais , Adesão Celular , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Células Cultivadas
3.
J Cell Sci ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140137

RESUMO

Mechanotransduction, which is the integration of mechanical signals from the cell's external environment to changes in intracellular signaling, governs many cellular functions. Recent studies have shown that the mechanical state of the cell is also coupled to the cellular circadian clock. To investigate possible interactions between circadian rhythms and cellular mechanotransduction, we have developed a computational model that integrates the two pathways. We postulated that the translocation of the transcriptional regulators YAP/TAZ and MRTF into the nucleus leads to altered expression of circadian proteins. Simulations from our model predict that lower levels of cytoskeletal activity are associated with longer circadian oscillation periods and higher oscillation amplitudes, consistent with recent experimental observations. Furthermore, accumulation of YAP/TAZ and MRTF in the nucleus causes circadian oscillations to decay. These effects hold both at the single-cell level and within a population-level framework. Finally, we investigated the effects of mutations in YAP or lamin A, the latter of which lead to a class of diseases known as laminopathies. Oscillations in circadian proteins are substantially weaker in populations of cells with in silico mutations in YAP or lamin A, suggesting that defects in mechanotransduction can disrupt the circadian clock in certain disease states. However, by reducing substrate stiffness, we were able to restore normal oscillatory behavior, suggesting a possible compensatory mechanism. Thus our study identifies that mechanotransduction could be a potent modulatory cue for cellular clocks and this crosstalk can be leveraged to rescue the circadian clock in disease states.

4.
Front Physiol ; 15: 1425618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135710

RESUMO

Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.

5.
J Biomech ; 174: 112265, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137485

RESUMO

Chondrocytes respond to mechanical stimuli by increasing their intracellular calcium concentration. The response depends on the cellular environment. Previous studies have investigated chondrocytes under slow strain rates or cells embedded in hydrogels, but the response of chondrocytes in their native environment under physiologically relevant cyclic loads and dynamic hydrostatic pressure has not been studied. This study investigated the calcium signaling response of in-situ chondrocytes under physiological cyclic compressive loads and hydrostatic pressure with varying frequency and load rates. Bovine cartilage explants were stained with a fluorescent calcium indicator dye and subjected to physiologically relevant cyclic loads using a custom-built loading device secured on a confocal/multiphoton microscope. Calcium fluorescence intensities of the cells were tracked and analyzed. Loading groups were compared using one-way ANOVA followed by a post-hoc test with Tukey correction (α = 0.05). The percentage of cells signaling increased in all compressive loading conditions compared to the no-load baseline. The percentage of cells responding under 1 Hz load was significantly greater than the slow ramp and 0.1 Hz group (p < 0.05). The number of compression cycles had no effect on the calcium signaling response (p > 0.05). The width and time between consecutive peaks were not different between different loading conditions (p > 0.05). Calcium signaling of in-situ chondrocytes did not increase under dynamic hydrostatic pressure of magnitudes up to 0.2 MPa at frequencies of 0.5 Hz and 0.05 Hz (p > 0.05). In conclusion, in-situ chondrocytes respond to physiological compressive loads in a strain rate-dependent manner with an increased number of responsive cells and unaltered temporal characteristics.

6.
J Lipid Res ; : 100620, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151591

RESUMO

Adipose tissue remodeling and plasticity are dynamically regulated by the coordinated functions of adipocytes, macrophages, and endothelial cells and extracellular matrix (ECM) that provides stiffness networks in adipose tissue component cells. Inflammation and fibrosis are crucial exogenous factors that dysregulate adipose tissue functions and drastically change the mechanical properties of the ECM. Therefore, communication among the ECM and adipose tissue component cells is necessary to understand the multifaceted functions of adipose tissues. To obtain in vivo stiffness, we utilized genipin as a crosslinker for collagen gels. Meanwhile, we isolated primary adipocytes, macrophages, and endothelial cells from C57BL/6J mice and incubated these cells in the differentiation media on temperature-responsive culture dishes. After the differentiation, these cell sheets were transferred onto genipin-crosslinked collagen gels with varying matrix stiffness. We found that inflammatory gene expressions were induced by hard matrix, whereas anti-inflammatory gene expressions were promoted by soft matrix in all three types of cells. Interestingly, the co-culture experiments of adipocytes, macrophages, and endothelial cells showed that the effects of soft or hard matrix stiffness stimulation on adipocytes were transmitted to the distant adipose tissue component cells, altering their gene expression profiles under normal matrix conditions. Finally, we identified that a hard matrix induces the secretion of CXCL13 from adipocytes, and CXCL13 is one of the important transmitters for stiffness communication with macrophages and endothelial cells. These findings provide insight into the mechano-transmission into distant cells and the application of stiffness control for chronic inflammation in adipose tissues with metabolic dysregulation.

7.
FASEB J ; 38(15): e23865, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096136

RESUMO

A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.


Assuntos
Mitocôndrias , Mitofagia , Osteoprotegerina , Ligamento Periodontal , Ligante RANK , Técnicas de Movimentação Dentária , Animais , Mitofagia/fisiologia , Ratos , Ligante RANK/metabolismo , Ligamento Periodontal/metabolismo , Osteoprotegerina/metabolismo , Mitocôndrias/metabolismo , Masculino , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Adolescente , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco/metabolismo , Remodelação Óssea/fisiologia , Células Cultivadas
8.
Curr Biol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39153481

RESUMO

Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39091017

RESUMO

Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.

11.
Bioessays ; : e2400055, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093597

RESUMO

In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.

12.
J Cell Sci ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120491

RESUMO

Cells sense and respond to mechanical forces through mechanotransduction, which regulates processes in health and disease. In single adhesive cells, mechanotransduction involves the transmission of force from the extracellular matrix to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the subsequent nuclear localization of transcriptional regulators such as YAP. However, if and how NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that nucleocytoplasmic transport responds to mechanics but not cell density in cell monolayers. Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered in response both to osmotic shocks, and to the inhibition of cell contractility. Further, NCT correlates with the degree of nuclear deformation measured through nuclear solidity, a shape parameter related to nuclear envelope tension. In contrast, YAP but NCT is sensitive to cell density, showing that YAP response to cell-cell contacts is not via a mere mechanical effect of NCT. Our results demonstrate the generality of the mechanical regulation of NCT.

13.
Genetics ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053622

RESUMO

The elongation of C. elegans embryos allows examination of mechanical interactions between adjacent tissues. Muscle contractions during late elongation induce the remodelling of epidermal circumferential actin filaments through mechanotransduction. Force inputs from the muscles deform circumferential epidermal actin filament, which causes them to be severed, eventually reformed and shortened. This squeezing force drives embryonic elongation. We investigated the possible role of the non-muscle myosins NMY-1 and NMY-2 in this process using nmy-1 and nmy-2 thermosensitive alleles. Our findings show these myosins act redundantly in late elongation, since double nmy-2(ts); nmy-1(ts) mutants immediately stop elongation when raised to 25°C. Their inactivation does not reduce muscle activity, as measured from epidermis deformation, suggesting that they are directly involved in the multi-step process of epidermal remodeling. Furthermore, NMY-1 and NMY-2 inactivation is reversible when embryos are kept at the non-permissive temperature for a few hours. However, after longer exposure to 25°C double mutant embryos fail to resume elongation, presumable because NMY-1 was seen to form protein aggregates. We propose that the two C. elegans non-muscle myosin II act during actin remodeling either to bring severed ends or hold them.

14.
bioRxiv ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38948772

RESUMO

Duchenne muscular dystrophy (DMD) is marked by the genetic deficiency of the dystrophin protein in striated muscle whose consequence is a cascade of cellular changes that predispose the susceptibility to contraction injury central to DMD pathology. Recent evidence identified the proliferation of microtubules enriched in post-translationally modified tubulin as a consequence of dystrophins absence that increases the passive mechanics of the muscle fiber and the excess mechanotransduction elicited reactive oxygen species and calcium signals that promote contraction injury. Motivated by evidence that acutely normalizing the disease microtubule alterations reduced contraction injury in murine DMD muscle (mdx), here we sought the direct impact of these microtubule alterations independent of dystrophins absence and the multitude of other changes consequent to dystrophic disease. To this end we used acute pharmacologic (epithiolone-D, EpoD; 4 hours) or genetic (vashohibin-2 and small vasohibin binding protein overexpression via AAV9; 2 weeks) strategies to effectively model the proliferation of detyrosination enriched microtubules in the mdx muscle. Quantifying in vivo nerve evoked plantarflexor function we find no alteration in peak torque nor contraction kinetics in WT mice modeling these DMD relevant MT alterations. Quantifying the susceptibility to eccentric contraction injury we show EpoD treatment proffered a small but significant protection from contraction injury while VASH/SVBP had no discernable impact. We conclude that the disease dependent MT alterations act in concert with additional cellular changes to predispose contraction injury in DMD.

15.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948838

RESUMO

Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38972940

RESUMO

Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975-986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.

17.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979323

RESUMO

The pericellular matrix (PCM) is the immediate microniche surrounding resident cells in various tissue types, regulating matrix turnover, cell-matrix cross-talk and disease initiation. This study elucidated the structure-mechanical properties and mechanobiological functions of the PCM in fibrocartilage, a family of connective tissues that sustain complex tensile and compressive loads in vivo. Studying the murine meniscus as the model tissue, we showed that fibrocartilage PCM contains thinner, random collagen fibrillar networks that entrap proteoglycans, a structure distinct from the densely packed, highly aligned collagen fibers in the bulk extracellular matrix (ECM). In comparison to the ECM, the PCM has a lower modulus and greater isotropy, but similar relative viscoelastic properties. In Col5a1 +/- menisci, the reduction of collagen V, a minor collagen localized in the PCM, resulted in aberrant fibril thickening with increased heterogeneity. Consequently, the PCM exhibited a reduced modulus, loss of isotropy and faster viscoelastic relaxation. This disrupted PCM contributes to perturbed mechanotransduction of resident meniscal cells, as illustrated by reduced intracellular calcium signaling, as well as upregulated biosynthesis of lysyl oxidase and tenascin C. When cultured in vitro, Col5a1 +/- meniscal cells synthesized a weakened nascent PCM, which had inferior properties towards protecting resident cells against applied tensile stretch. These findings underscore the PCM as a distinctive microstructure that governs fibrocartilage mechanobiology, and highlight the pivotal role of collagen V in PCM function. Targeting the PCM or its molecular constituents holds promise for enhancing not only meniscus regeneration and osteoarthritis intervention, but also addressing diseases across various fibrocartilaginous tissues.

18.
Small Methods ; : e2400272, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011729

RESUMO

In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology.

19.
Cell Rep ; 43(7): 114480, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003737

RESUMO

The cytoskeleton of the cell is constantly exposed to physical forces that regulate cellular functions. Selected members of the LIM (Lin-11, Isl-1, and Mec-3) domain-containing protein family accumulate along force-bearing actin fibers, with evidence supporting that the LIM domain is solely responsible for this force-induced interaction. However, LIM domain's force-induced interactions are not limited to actin. LIMK1 and LMO1, both containing only two tandem LIM domains, are recruited to force-bearing keratin fibers in epithelial cells. This unique recruitment is mediated by their LIM domains and regulated by the sequences outside the LIM domains. Based on in vitro reconstitution of this interaction, LIMK1 and LMO1 directly interact with stretched keratin 8/18 fibers. These results show that LIM domain's mechano-sensing abilities extend to the keratin cytoskeleton, highlighting the diverse role of LIM proteins in force-regulated signaling.


Assuntos
Filamentos Intermediários , Queratinas , Proteínas com Domínio LIM , Quinases Lim , Proteínas com Domínio LIM/metabolismo , Humanos , Quinases Lim/metabolismo , Queratinas/metabolismo , Filamentos Intermediários/metabolismo , Ligação Proteica , Animais , Fatores de Transcrição/metabolismo
20.
Neuron ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38986620

RESUMO

Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C. elegans expresses two TMCs (TMC-1 and TMC-2), which mediate mechanosensation, egg laying, and alkaline sensing. The mechanisms by which nematode TMCs contribute to such diverse physiological processes and their functional relationship to mammalian mTMCs is unclear. Here, we show that association with accessory proteins tunes nematode TMC-1 to divergent sensory functions. In addition, distinct TMC-1 domains enable touch and alkaline sensing. Strikingly, these domains are segregated in mammals between mTMC1 and mTMC3. Consistent with these findings, mammalian mTMC1 can mediate mechanosensation in nematodes, while mTMC3 can mediate alkaline sensation. We conclude that sequence diversification and association with accessory proteins has led to the emergence of TMC protein complexes with diverse properties and physiological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA