Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(9): 4380-4401, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39240819

RESUMO

Textile-based surface electromyography (sEMG) electrodes have emerged as a prominent tool in muscle fatigue assessment, marking a significant shift toward innovative, noninvasive methods. This review examines the transition from metallic fibers to novel conductive polymers, elastomers, and advanced material-based electrodes, reflecting on the rapid evolution of materials in sEMG sensor technology. It highlights the pivotal role of materials science in enhancing sensor adaptability, signal accuracy, and longevity, crucial for practical applications in health monitoring, while examining the balance of clinical precision with user comfort. Additionally, it maps the global sEMG research landscape of diverse regional contributors and their impact on technological progress, focusing on the integration of Eastern manufacturing prowess with Western technological innovations and exploring both the opportunities and challenges in this global synergy. The integration of such textile-based sEMG innovations with artificial intelligence, nanotechnology, energy harvesting, and IoT connectivity is also anticipated as future prospects. Such advancements are poised to revolutionize personalized preventive healthcare. As the exploration of textile-based sEMG electrodes continues, the transformative potential not only promises to revolutionize integrated wellness and preventive healthcare but also signifies a seamless transition from laboratory innovations to real-world applications in sports medicine, envisioning the future of truly wearable material technologies.


Assuntos
Eletromiografia , Fadiga Muscular , Têxteis , Eletromiografia/métodos , Humanos , Fadiga Muscular/fisiologia , Eletrodos , Dispositivos Eletrônicos Vestíveis
2.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124944

RESUMO

The aim of this work was to determine the changes in the chemical and physical-mechanical properties of gauze compresses under the influence of various sterilizations. Gauze compresses are made of cotton; therefore, all methods used focused on cotton. The methods used to test possible damage to cotton materials (pH value (pH paper, KI starch paper), yellowing test, Fehling reaction, reaction to the formation of Turnbull blue (Berlin blue), microscopic staining with methylene blue and swelling reaction with Na-zincate) did not show that the sterilizations affected the cotton compresses. The morphological characteristics were examined with a scanning electron microscope (SEM). The SEM images showed that there were no morphological changes in the cotton fibers. FTIR-ATR spectroscopy revealed that the sterilization processes did not alter the characteristic bands of the cotton. The length of the macromolecules was increased (DP), showing that the sterilization processes had affected the cotton. The results of the wet strength test followed. The samples showed values below 100%, with the exception of two samples. It is known from theory that the relative wet strength is less than 100% when the material is damaged. The t-test performed on the strength results showed that the p-value was greater than 0.05 for all samples tested, with the exception of one sample. The degree of swelling capacity was determined, with non-sterilized samples having the highest capacity, followed by samples sterilized with ethylene oxide and then samples sterilized by steam sterilization. The results obtained are a contribution to the innovation of the topic of this work and a scientific confirmation for manufacturers and anyone interested in the influence of the sterilization process on natural fibers (cotton).

3.
J Occup Environ Hyg ; 21(4): 239-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437682

RESUMO

The COVID-19 pandemic created an unprecedented increase in the usage of personal protective equipment (PPE) in the healthcare industry, especially in the form of face coverings. Subsequently, guidelines related to breathability and wear comfort were published by the Centers for Disease Control (CDC) as an influx of various new materials entered the PPE market. This study evaluated a proprietary, novel, zinc-ion embedded fiber with the ability to deactivate bacteria and viruses, including SARS-COV-2, for its wear comfort in a nonwoven disposable mask in comparison to a commercially available surgical face mask which served as the control. Ten healthy, full-time, career, firefighters participated in this study wearing both masks in a randomized fashion. A medical task simulation (MTS) protocol was developed to replicate nursing task metabolic rates, per the compendium of physical activities, via a graded treadmill walking exercise. Participant ratings including ease of mask fit, overall mask comfort, facial comfort, breathability, and facial temperature sensation were recorded before, during, and after the 50-minute protocol in a controlled environmental chamber. The 100% nylon, zinc ion mask was rated as slightly cooler at the beginning of the trial (at 0.8 vs. 1.3), than the commercially available polypropylene mask. The polypropylene mask also reached a perceived mask facial comfort (MFC) rating of 1.6 just 35 min into the protocol whereas the zinc ion mask did not reach a rating of slight discomfort until the end of the exercise. Findings indicate the novel zinc-ion embedded mask was as comfortable, if not more so, than the commercially available nonwoven mask with more favorable ratings for longer durations. Not only do the zinc properties provide enhanced protection, but they maintain, if not improve, wearer comfort.


Assuntos
Anti-Infecciosos , COVID-19 , Dispositivos de Proteção Respiratória , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Zinco , Polipropilenos , Atenção à Saúde
4.
Materials (Basel) ; 16(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005054

RESUMO

Abdominal hernias are common issues in the clinical setting, burdening millions of patients worldwide. Associated with pain, decreased quality of life, and severe potential complications, abdominal wall hernias should be treated as soon as possible. Whether an open repair or laparoscopic surgical approach is tackled, mesh reinforcement is generally required to ensure a durable hernia repair. Over the years, numerous mesh products have been made available on the market and in clinical settings, yet each of the currently used meshes presents certain limitations that reflect on treatment outcomes. Thus, mesh development is still ongoing, and emerging solutions have reached various testing stages. In this regard, this paper aims to establish an up-to-date framework on abdominal meshes, briefly overviewing currently available solutions for hernia repair and discussing in detail the most recent advances in the field. Particularly, there are presented the developments in lightweight materials, meshes with improved attachment, antimicrobial fabrics, composite and hybrid textiles, and performant mesh designs, followed by a systematic review of recently completed clinical trials.

5.
Int J Biol Macromol ; 253(Pt 7): 127350, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838117

RESUMO

This study aims at the development of electrospun polylactic acid nanofibers (PLLA NFs) incorporating smart daclatasvir-loaded chitosan gelatin nanoparticles to be used as medical textiles. First, smart nanoparticles were prepared through ionic gelation and optimized using Design Expert® software where daclatasvir (DAC), chitosan (CS), and gelatin (GL) amounts were selected to be the independent variables. DAC was used owing to its reported Anti-SARS-CoV-2 activity, CS was chosen due to its antimicrobial activity and GL was used owing to its sensitivity to be hydrolyzed upon exposure to Papain-like protease enzyme (PLpro). The optimum DAC-CS/TAN NPs possessed 109 nm size and 94.44 % entrapment efficiency in addition to sustained drug release for 14 days. Furthermore, upon exposure to PLpro, smart DAC-CS/GL NPs released the whole DAC amount within 3 h. Then, DAC-CS/GL NPs were incorporated within PLLA NFs through electrospinning. Swellability was found to increase gradually reflecting the controlled release of DAC from nanofibers within 3 weeks. Cell viability assessments using human fibroblasts showed that the developed nanofibers possess high biocompatibility. An in-vivo animal model for skin irritation was carried out for two weeks where visual inspection and histopathological investigations showed that neither edema nor erythema were observed.


Assuntos
Anti-Infecciosos , COVID-19 , Quitosana , Nanofibras , Nanopartículas , Animais , Humanos , Gelatina
6.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687210

RESUMO

Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton fabric, additional ionic interactions. The resulting textiles exhibited potent bactericidal activity against S. aureus (99.99% reduction), although only moderate activity was observed against E. coli. Fabrics treated with reactive organo-selenium compounds also exhibited fungicidal activities against C. albicans, and much higher antifungal activity was observed when organo-selenium compounds were applied to the cationized cotton in comparison to the bleached cotton. The treatment was found to be durable against rigorous washing conditions (non-ionic detergent/100 °C). This paper is the first report on a novel approach integrating the reaction of cotton fabrics with an organo-selenium antimicrobial agent. This approach is attractive because it provides a method for imparting antimicrobial properties to cotton fabrics which does not disrupt the traditional production processes of a textile mill.


Assuntos
Anti-Infecciosos , Compostos de Selênio , Selênio , Anti-Infecciosos/farmacologia , Candida albicans , Escherichia coli , Ácido Hipocloroso , Selênio/farmacologia , Staphylococcus aureus , Têxteis
7.
Pharmaceutics ; 15(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37631287

RESUMO

A significant number of deaths are reported annually worldwide due to microbial and viral infections. The development of protective medical textiles for patients and healthcare professionals has attracted many researchers' attention. Therefore, this study aims to develop smart drug-eluting nanofibrous matrices to be used as a basic material for medical textile fabrication. First, chitosan/gelatin nanofibers were selected as the basic material owing to the wide antimicrobial activity of chitosan and the capability of gelatin to be hydrolyzed in the abundance of the papain-like protease (PLpro) enzyme secreted by SARS-CoV-2. Daclatasvir (DAC), an NS5A inhibitor, was selected as the model drug based on in silico studies where it showed high anti-SARS-CoV-2 potential compared to FDA-approved references. Due to their reported antimicrobial and antiviral activities, ZnO NPs were successfully prepared and incorporated with daclatasvir in chitosan/gelatin nanofibrous matrices through electrospinning. Afterward, an in vitro release study in a simulated buffer revealed the controlled release of DAC over 21 days from the nanofibers compared to only 6 h for free DAC. On the other hand, the abundance of PLpro induced the complete release of DAC from the nanofibers in only 4-8 h. Finally, the nanofibers demonstrated a wide antimicrobial activity against S. aureus, E. coli, and C. albicans.

8.
Healthcare (Basel) ; 11(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107948

RESUMO

The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.

9.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236100

RESUMO

This study aimed to obtain functional viscose textiles based on chitosan coatings with improved antibacterial properties and washing durability. For that reason, before functionalization with chitosan/zinc nanoparticles (NCH+Zn), the viscose fabric was modified by nonthermal gas plasma of dielectric barrier discharge (DBD) to introduce into its structure functional groups suitable for attachment of NCH+Zn. NCH+Zn were characterized by measurements of hydrodynamic diameter and zeta potential and AFM. DBD-plasma-modified and NCH+Zn-functionalized fabrics were characterized by zeta potential measurements, ATR-FTIR spectroscopy, the calcium acetate method (determination of content of carboxyl and aldehyde groups), SEM, breaking-strength measurements, elemental analysis, and ICP-OES. Their antibacterial activity was determined under dynamic contact conditions. In addition to SEM, the NCH+Zn distributions on viscose fabrics were also indirectly characterized by measuring their absorbent capacities before and after functionalization with NCH+Zn. Washing durability was monitored through changes in the zeta potential, chitosan and zinc content, and antibacterial activity after 1, 3, and 5 washing cycles. The obtained results showed that DBD plasma modification contributed to the simultaneous improvement of NCH+Zn sorption and antibacterial properties of the viscose fabric functionalized with NCH+Zn, and its washing durability, making it suitable for the production of high-value-added medical textiles.

10.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683931

RESUMO

The aim of the present study was to determine the influence of the spunbond process and the meltblown process, as well as various combinations of the two processes, on the functional performance of layered nonwovens for medical purposes. In the present study, eight samples used in the medical field, mainly for medical masks, were analysed. The samples studied were laminated nonwovens produced by the spunbond and meltblown processes, and combinations of spunbond and meltblown processes. In order to determine the influence of the technological process used to produce a base layer of nonwoven fabrics on their functionality, measurements of tensile strength and extension, water vapour permeability, air permeability, porosity, and thermal conductivity were performed. In addition, the structural characteristics of selected samples were analysed, such as fibre diameter, thickness, mass, raw material composition, and surface openness. The aim of the present study was to find the optimal combination of spunbond and meltblown processes for medical textiles. Based on the research results, we can conclude that the five-layer composite in which three layers are made by spunbond (S) and two layers are made by meltblown (M) in combination as SSMMS from PP fibres has optimal air permeability, filtration of pollutants passing through a protective mask, water vapour permeability and thermal conductivity, and is optimal for use as a multilayer nonwoven fabric for medical masks. Multilayer SSMMS composites also have a lower weight, resulting in less energy and time required for recycling such textiles.

11.
Prog Biomater ; 11(2): 229-241, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35622299

RESUMO

Recently the use of plant-derived extracts for the green synthesis of nanoparticles has drawn considerable attention. In the present study silver and copper nanoparticles were synthesized using extracts of Andrographis paniculata which is found to possess various pharmacological properties. The synthesized nanoparticles were characterized using UV spectroscopy, SEM with EDS, XRD, TEM and DLS. Furthermore, an attempt is made to impregnate these nanoparticles onto cotton bandages. The structure and morphology of silver nanoparticles impregnated onto the cotton bandages were confirmed by SEM. The anti-bacterial activity of cotton bandages loaded with silver and copper nanoparticles was tested against Escherichia coli, Bacillus cereus, and Staphylococcus aureus using a modified disc diffusion assay. The results indicate that the cotton bandages biofabricated with nanoparticles exhibited anti-bacterial activity in terms of zone of inhibition of growth of tested bacteria suggesting their usage as medical textiles in various biomedical applications for the prevention of infections. Hence, the nanoparticles impregnated cotton fibers can be applied for the development of masks, aprons, etc. to protect against bacterial penetration and as well to counteract the present situation of the world.

12.
Adv Healthc Mater ; 11(13): e2102613, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35394654

RESUMO

Suture materials are the most common bioimplants in surgical and clinical practice, playing a crucial role in wound healing and tendon and ligament repair. Despite the assortment available on the market, sutures are still affected by significant disadvantages, including failure in mimicking the mechanical properties of the tissue, excessive fibrosis, and inflammation. This study introduces a mandrel-less electrodeposition apparatus to fabricate continuous microfiber wires of indefinite length. The mandrel-less biofabrication produces wires, potentially used as medical fibers, with different microfiber bundles, that imitate the hierarchical organization of native tissues, and tailored mechanical properties. Microfiber wire morphology and mechanical properties are characterized by scanning electron microscopy, digital image processing, and uniaxial tensile test. Wires are tested in vitro on monocyte/macrophage stimulation and in vivo on a rat surgical wound model. The wires produced by mandrel-less deposition show an increased M2 macrophage phenotype in vitro. The in vivo assessment demonstrates that microfiber wires, compared to the medical fibers currently used, reduce pro-inflammatory macrophage response and preserve their mechanical properties after 30 days of use. These results make this microfiber wire an ideal candidate as a suture material for soft tissue surgery, suggesting a crucial role of microarchitecture in more favorable host response.


Assuntos
Suturas , Engenharia Tecidual , Animais , Ratos , Tendões , Resistência à Tração , Engenharia Tecidual/métodos , Cicatrização
13.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960955

RESUMO

Medical textiles, such as gowns, scrubs, and even disposable uniforms, are all stitched by sewing machines. These garments are mostly made from polypropylene (PP) and polyester due to their durability, antibacterial performance, and functionality. Demand for these garments has significantly risen in the last few years, and sewing machines are able to stitch at extremely high speeds. However, higher sewing speeds can cause burnt spots on the fabric, lower seam strength, and a decrease in production due to thread breakage. In this paper, I have deeply discussed how medical textiles lose their strength and functionality due to higher sewing speeds; this problem is often neglected due to high production demands. This research is based on PP medical gowns, stitched with polyester (PET) threads, sewn at different speeds. The experimental work is also followed by a theoretical explanation of needle heating during the stitching of medical textiles.

14.
Mater Sci Eng C Mater Biol Appl ; 129: 112414, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579923

RESUMO

Despite the clinical success of Anterior Cruciate Ligament reconstruction (ACLR) in some patients, unsatisfactory clinical outcomes secondary to graft failure are seen, indicating the need to develop new regeneration strategies. The use of degradable and bioactive textiles has the potential to improve the biological repair of soft tissue. Electrospun (ES) filaments are particularly promising as they have the ability to mimic the structure of natural tissues and influence endogenous cell behaviour. In this study, we produced continuous polycaprolactone (PCL) ES filaments using a previously described electrospinning collection method. These filaments were stretched, twisted, and assembled into woven structures. The morphological, tensile, and biological properties of the woven fabric were then assessed. Scanning electron microscopy (SEM) images highlighted the aligned and ACL-like microfibre structure found in the stretched filaments. The tensile properties indicated that the ES fabric reached suitable strengths for a use as an ACLR augmentation device. Human ACL-derived cell cultured on the fabric showed approximately a 3-fold increase in cell number over 2 weeks and this was equivalent to a collagen coated synthetic suture commonly used in ACLR. Cells generally adopted a more elongated cell morphology on the ES fabric compared to the control suture, aligning themselves in the direction of the microfibres. A NRU assay confirmed that the ES fabric was non-cytotoxic according to regulatory standards. Overall, this study supports the development of ES textiles as augmentation devices for ACLR.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Humanos , Poliésteres , Têxteis
15.
Mar Drugs ; 19(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201803

RESUMO

Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity, which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and interacting with negatively charged outer cellular components, which lead to an increase in the cell permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS's potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics, considering that most of the latter have induced bacterial resistance because of excessive and/or inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered release, dependent on CS's protonation/deprotonation of its amine groups, has been the most explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or additional stabilization processes is enabling slower release rates, following extract diffusion from the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few published studies have already revealed that the composition, along with an adequate drug release rate, has an important role in controlling an existing infection, forming new tissue, and successfully closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration, superior washing durability, and biological response.


Assuntos
Antibacterianos/química , Quitosana/química , Extratos Vegetais/química , Antibacterianos/farmacologia , Organismos Aquáticos , Sistemas de Liberação de Medicamentos , Nanofibras/química , Nanopartículas/química , Extratos Vegetais/farmacologia
16.
J Funct Biomater ; 12(1)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535519

RESUMO

Hospital patients and personnel are at risk of nosocomial viral infections, as clearly manifested during the COVID-19 pandemic. Transmission of respiratory viral pathogens can occur through contaminated surfaces, including from medical textiles. Copper has potent biocidal properties, and cuprous oxide impregnated medical textiles (CMT) reduce hospital-acquired bacterial infections. In the current study we confirm the antimicrobial properties of CMT and determine their capacity to reduce infectious titres of human coronavirus (HCoV-229E) in an independent laboratory. The antibacterial and antiviral activities of the CMT were determined according to AATCC TM100-2019 and ISO 18184:2019 standards, respectively. The CMT reduced by 4 logs the viable titers of MRSA, Klebsiella pneumoniae, Enterococcus faecalis, and Candida auris after 2 h of incubation. Viable titers of Clostridium difficile were reduced by 2.3, 3, and 4 logs after 2, 6, and 18 h, respectively. Infectious titers of HCoV-229E exposed to CMT for 2 h were reduced by 2.8 and 4 logs (99.85% and 99.99% reductions) as compared to Time-0 control and initial inoculum, respectively. The CMT retain their antibacterial efficacy even after 100 industrial washings. Use of cuprous oxide impregnated textiles in clinical settings may reduce not only hospital acquired infections caused by bacterial and fungal pathogens, but also, and equally important, those caused by coronavirus and other viruses.

17.
J Biomed Mater Res B Appl Biomater ; 109(10): 1512-1524, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523550

RESUMO

Foreign Body Reaction (FBR) is a critical issue to be addressed when polyethylene terephthalate (PET) textile implants are considered in the medical field to treat pathologies involving hernia repair, revascularization strategies in arterial disease, and aneurysm or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. The purpose of this study is to assess the influence of the textile topography of various woven substrates on the wetting properties of these substrates and on their in vitro interaction with mesenchymal stem cells (MSC) at 24 and 72 hr. The tests were performed both at yarn and fabric level under forced wetting and ingrowth conditions in order to replicate the mechanisms going on in vivo under blood pressure. Results demonstrate that cell proliferation is influenced by the textile wetting properties, which can be tuned at yarn and fabric level. In particular, it is shown that a satin weave obtained from porous spun yarn limits cell proliferation due to the high porosity of the yarn and the limited saturation index of the weave. Yarn and fabric saturation seems to play a predominant role in cell proliferation on textile substrates.


Assuntos
Materiais Biocompatíveis/química , Fibrose/metabolismo , Reação a Corpo Estranho/prevenção & controle , Próteses Valvulares Cardíacas , Polietilenotereftalatos/química , Alicerces Teciduais/química , Adesão Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade , Propriedades de Superfície , Têxteis , Engenharia Tecidual , Agentes Molhantes/química
18.
Nanomaterials (Basel) ; 11(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567743

RESUMO

Medical textiles have played an increasingly important protection role in the healthcare industry. This study was aimed at improving the conventional cotton gauze for achieving advanced biomedical specifications (coloration, UV-protection, anti-inflammation, and antimicrobial activities). These features were obtained by modifying the cotton gauze fabrics via in-situ precipitation of hydroxyapatite nanoparticles (HAp NP), followed by in-situ photosynthesis of silver (Ag) NPs with ginger oil as a green reductant with anti-inflammation properties. The HAp-Ag NPs coating provides good UV-protection properties. To further improve the HAp and Ag NPs dispersion and adhesion on the surface, the cotton gauze fabrics were modified by cationization with chitosan, or by partial carboxymethylation (anionic modification). The influence of the cationic and anionic modifications and HAp and Ag NPs deposition on the cotton gauze properties (coloration, UV-protection, antimicrobial activities, and water absorption) was thoroughly assessed. Overall, the results indicate that chemical (anionic and cationic) modification of the cotton gauze enhances HAp and Ag NPs deposition. Chitosan can increase biocompatibility and promotes wound healing properties of cotton gauze. Ag NP deposition onto cotton gauze fabrics brought high antimicrobial activities against Candida albicans, Gram-positive and Gram-negative bacteria, and improved UV protection.

19.
Biomed Tech (Berl) ; 66(2): 225-230, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32739902

RESUMO

Transcatheter Aortic Valve Implantation (TAVI) has become today a popular alternative technique to surgical valve replacement for critical patients. However, with only six years follow up on average, little is known about the long-term durability of transcatheter implanted biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. In that context, thin, strong and flexible woven fibrous constructions could be considered as interesting candidates. However, the interaction of textile material with living tissue should be comparable to biological tissue, and the Foreign Body Reaction (FBR) in particular should be controlled. Actually, the porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. The purpose of this preliminary animal case study is to investigate the influence of the valve leaflet yarn orientation on the fibrotic tissue ingrowth. For that purpose the in vivo performances of 45° inclined yarn woven valve leaflets implanted in juvenile sheep model were assessed after three months implantation. Results bring out that in the frame of this case study the development of fibrosis is limited with a woven fabric valve obtained from 45° inclined yarns.


Assuntos
Valva Aórtica/cirurgia , Fibrose/fisiopatologia , Próteses Valvulares Cardíacas , Animais , Valva Aórtica/fisiopatologia , Humanos , Poliésteres/metabolismo , Desenho de Prótese , Ovinos , Têxteis
20.
Am J Infect Control ; 49(5): 563-570, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33091509

RESUMO

BACKGROUND: Medical gowns are essential personal protective equipment (PPE) that prevents the spread of microorganisms and bodily fluids. During surge capacity situations, such as the COVID-19 pandemic, reusable PPE is often recommended due to shortages. METHODS: This research evaluated the performance of disposable versus reusable medical gowns by assessing their ability to provide adequate protection across their expected service lifespan. Level I, II, and III gowns were tested for water resistance and hydrostatic pressure, along with other durability assessments (breaking, tear, and seam strength, pilling resistance, dimensional stability, and air permeability, colorfastness, and fabric hand) per standard test methods. Data were collected at new for the disposable gowns and after 1, 25, 50, and 75 industrial launderings for the reusable gowns. Results were compared to the Association of the Advancement Instrumentation® (AAMI) PB70 performance specifications. RESULTS: Level I and II disposable gowns did not meet AAMI performance specifications for impact penetration water resistance. All 3 levels of disposable gowns also failed to meet the American Society for Testing and Materials performance requirements for breaking strength in the crosswise direction. CONCLUSIONS: The adoption of reusable gowns may result in increased protection and significant cost savings due to their superior durability and sustainability when compared to disposable gowns.


Assuntos
COVID-19/prevenção & controle , Equipamentos Descartáveis , Luvas Protetoras , Pandemias , Roupa de Proteção , COVID-19/epidemiologia , Humanos , SARS-CoV-2 , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA