Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(12): 4683-4700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239525

RESUMO

N6-methyladenosine (m6A) is the most abundant post-transcriptional dynamic RNA modification process in eukaryotes, extensively implicated in cellular growth, embryonic development and immune homeostasis. One of the most profound biological functions of m6A is to regulate RNA metabolism, thereby determining the fate of RNA. Notably, the regulation of m6A-mediated organized RNA metabolism critically relies on the assembly of membraneless organelles (MLOs) in both the nucleus and cytoplasm, such as nuclear speckles, stress granules and processing bodies. In addition, m6A-associated MLOs exert a pivotal role in governing diverse RNA metabolic processes encompassing transcription, splicing, transport, decay and translation. However, emerging evidence suggests that dysregulated m6A levels contribute to the formation of pathological condensates in a range of human diseases, including tumorigenesis, reproductive diseases, neurological diseases and respiratory diseases. To date, the molecular mechanism by which m6A regulates the aggregation of biomolecular condensates associated with RNA metabolism is unclear. In this review, we comprehensively summarize the updated biochemical processes of m6A-associated MLOs, particularly focusing on their impact on RNA metabolism and their pivotal role in disease development and related biological mechanisms. Furthermore, we propose that m6A-associated MLOs could serve as predictive markers for disease progression and potential drug targets in the future.


Assuntos
Adenosina , RNA , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , RNA/metabolismo , Organelas/metabolismo , Animais , Processamento Pós-Transcricional do RNA , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo
2.
Microbes Infect ; : 105402, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127089

RESUMO

During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.

3.
Sci China Life Sci ; 67(9): 1792-1832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39037698

RESUMO

Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.


Assuntos
Condensados Biomoleculares , Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Condensados Biomoleculares/metabolismo , Organelas/metabolismo , Animais , Transição de Fase , Perda Auditiva/metabolismo , Doenças do Sistema Imunitário/metabolismo
4.
J Mol Cell Biol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830800

RESUMO

Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membranous organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membranous organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.

5.
ACS Synth Biol ; 13(6): 1866-1878, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38836566

RESUMO

3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.


Assuntos
Escherichia coli , Fucosiltransferases , Engenharia Metabólica , Trissacarídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Trissacarídeos/metabolismo , Trissacarídeos/biossíntese , Engenharia Metabólica/métodos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Lactose/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Fermentação , Oligossacarídeos
6.
Int Rev Neurobiol ; 176: 455-479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802180

RESUMO

Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.


Assuntos
Esclerose Lateral Amiotrófica , Grânulos Citoplasmáticos , Ribonucleoproteínas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Ribonucleoproteínas/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Doenças Neurodegenerativas/metabolismo , Organelas/metabolismo
7.
Mol Cell ; 84(9): 1783-1801.e7, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614097

RESUMO

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.


Assuntos
Centrômero , Humanos , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/química , Separação de Fases
8.
Biotechnol Adv ; 73: 108355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38588907

RESUMO

Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.


Assuntos
Organelas , Organelas/metabolismo , Biologia Sintética/métodos , Condensados Biomoleculares/química , Bioengenharia , Humanos
9.
ACS Synth Biol ; 13(2): 598-612, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38308651

RESUMO

Subcellular phase-separated compartments, known as biomolecular condensates, play an important role in the spatiotemporal organization of cells. To understand the sequence-determinants of phase separation in bacteria, we engineered protein-based condensates in Escherichia coli using electrostatic interactions as the main driving force. Minimal cationic disordered peptides were used to supercharge negative, neutral, and positive globular model proteins, enabling their phase separation with anionic biomacromolecules in the cell. The phase behavior was governed by the interaction strength between the cationic proteins and anionic biopolymers, in addition to the protein concentration. The interaction strength primarily depended on the overall net charge of the protein, but the distribution of charge between the globular and disordered domains also had an impact. Notably, the protein charge distribution between domains could tune mesoscale attributes such as the size, number, and subcellular localization of condensates within E. coli cells. The length and charge density of the disordered peptides had significant effects on protein expression levels, ultimately influencing the formation of condensates. Taken together, charge-patterned disordered peptides provide a platform for understanding the molecular grammar underlying phase separation in bacteria.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Separação de Fases , Peptídeos
10.
J Biol Chem ; 300(2): 105531, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072051

RESUMO

Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.


Assuntos
Microscopia Crioeletrônica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Modelos Moleculares , Humanos , Separação de Fases , Domínios Proteicos , Mutação , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Estrutura Terciária de Proteína , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
11.
Mol Cell ; 84(2): 309-326.e7, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38096828

RESUMO

Membraneless organelles formed by phase separation of proteins and nucleic acids play diverse cellular functions. Whether and, if yes, how membraneless organelles in ways analogous to membrane-based organelles also undergo regulated fusion and fission is unknown. Here, using a partially reconstituted mammalian postsynaptic density (PSD) condensate as a paradigm, we show that membraneless organelles can undergo phosphorylation-dependent fusion and fission. Without phosphorylation of the SAPAP guanylate kinase domain-binding repeats, the upper and lower layers of PSD protein mixtures form two immiscible sub-compartments in a phase-in-phase organization. Phosphorylation of SAPAP leads to fusion of the two sub-compartments into one condensate accompanied with an increased Stargazin density in the condensate. Dephosphorylation of SAPAP can reverse this event. Preventing SAPAP phosphorylation in vivo leads to increased separation of proteins from the lower and upper layers of PSD sub-compartments. Thus, analogous to membrane-based organelles, membraneless organelles can also undergo regulated fusion and fission.


Assuntos
Condensados Biomoleculares , Densidade Pós-Sináptica , Animais , Fosforilação , Densidade Pós-Sináptica/metabolismo , Fenômenos Fisiológicos Celulares , Ligação Proteica , Organelas/metabolismo , Mamíferos
12.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069029

RESUMO

PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family-promyelocytic leukemia protein (PML). It is known that PML interacts with over a hundred partners, and the protein itself is represented by several major isoforms, differing in their variable and disordered C-terminal end due to alternative splicing. Despite nearly 30 years of research, the mechanisms underlying PML body formation and the role of PML proteins in this process remain largely unclear. In this review, we examine the literature and highlight recent progress in this field, with a particular focus on understanding the role of individual domains of the PML protein, its post-translational modifications, and polyvalent nonspecific interactions in the formation of PML bodies. Additionally, based on the available literature, we propose a new hypothetical model of PML body formation.


Assuntos
Proteínas Nucleares , Corpos Nucleares da Leucemia Promielocítica , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/química , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido
13.
Cell Rep ; 42(11): 113453, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976162

RESUMO

Increased de novo lipogenesis (DNL) is a major feature of nonalcoholic steatohepatitis (NASH). None of the drugs targeting the catalytic activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in the DNL process, have been approved by the FDA. Whether cytosolic ACC1 can be regulated spatially remains to be explored. Herein, we find that streptavidin (SA), which is a bacterium-derived tetrameric protein, forms cytosolic condensates and efficiently induces a spatial re-localization of ACC1 in liver cells, concomitant with inhibited lipid accumulation. Both SA tetrameric structure and multivalent protein interaction are required for condensate formation. Interestingly, the condensates are further characterized as gel-like membraneless organelle (SAGMO) and significantly restrict the cytosolic dispersion of ACC1 and fatty acid synthase. Notably, AAV-mediated delivery of SA partially blocks mouse liver DNL and ameliorates NASH without eliciting hypertriglyceridemia. In summary, our study shows that insulating lipogenesis-related proteins by SAGMO might be effective for NASH treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetil-CoA Carboxilase/metabolismo , Proteínas de Bactérias/metabolismo , Hepatócitos/metabolismo , Lipogênese , Bactérias/metabolismo , Fígado/metabolismo
14.
Curr Opin Cell Biol ; 85: 102250, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806294

RESUMO

Recent functional research on long noncoding RNAs (lncRNAs) has revealed their significant regulatory roles in gene expression and intracellular architecture. Well-characterized examples of such lncRNAs include Xist and NEAT1_2, which play critical roles in heterochromatin formation of inactive X-chromosomes and paraspeckle assembly, in mammalian cells. Both lncRNAs possess modular domain structures with multiple functionally distinct domains that serve as platforms for specific RNA-binding proteins (RBPs), which dictate the function of each lncRNA. Some of these RBPs bind characteristic RNA structures, which can be targeted by small chemical compounds that modulate lncRNA function by perturbing the interaction of RBPs with the RNA structures. Therefore, RNA structures hidden in lncRNAs represent a novel and potent type of therapeutic target.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mamíferos/metabolismo
15.
FEBS J ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735903

RESUMO

Liquid-liquid phase separation (LLPS) has been recognized as a universal biological phenomenon. It plays an important role in life activities. LLPS is induced by weak interactions between intrinsically disordered regions or low complex domains. Nucleic acids are widely present in cells, and shown to be closely related to LLPS. Their structure and electronegativity provide the excellent platforms for the formation of phase-separated condensates. In this review, we summarize the interconnected regulation between nucleic acids and LLPS demonstrated in in vivo and in vitro studies. Beside homogeneous and single-phase condensates, complicated and multicompartment LLPS induced by nucleic acids is discussed as well. Recent advances about nucleic-acid-induced LLPS as a new pathogenic mechanism and drug design direction are highlighted, especially virus-mediated disease treatment and prevention.

16.
Mol Cell ; 83(17): 3095-3107.e9, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683610

RESUMO

The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics. The mobility of rRNA is several orders of magnitude slower than that of nucleolar proteins, with rRNA steadily moving away from the transcriptional sites in a slow (∼1 Å/s), radially directed fashion. This constrained but directional mobility, together with polymer physics-based calculations, suggests that nascent rRNA forms an entangled gel, whose constant production drives outward flow. We propose a model in which progressive maturation of nascent rRNA reduces its initial entanglement, fluidizing the nucleolar periphery to facilitate the release of assembled pre-ribosomal particles.


Assuntos
RNA Ribossômico , RNA , RNA/genética , RNA Ribossômico/genética , Condensados Biomoleculares , Nucléolo Celular/genética , Proteínas Nucleares/genética
17.
EMBO J ; 42(18): e114331, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526230

RESUMO

Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.


Assuntos
RNA Longo não Codificante , RNA Satélite , Humanos , RNA Satélite/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , DNA Satélite/genética , Heterocromatina , Centrômero/metabolismo
18.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497453

RESUMO

Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.

19.
Essays Biochem ; 66(7): 831-847, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36350034

RESUMO

The facts that many proteins with crucial biological functions do not have unique structures and that many biological processes are compartmentalized into the liquid-like biomolecular condensates, which are formed via liquid-liquid phase separation (LLPS) and are not surrounded by the membrane, are revolutionizing the modern biology. These phenomena are interlinked, as the presence of intrinsic disorder represents an important requirement for a protein to undergo LLPS that drives biogenesis of numerous membrane-less organelles (MLOs). Therefore, one can consider these phenomena as crucial constituents of a new IDP-LLPS-MLO field. Furthermore, intrinsically disordered proteins (IDPs), LLPS, and MLOs represent a clear link between molecular and cellular biology and soft matter and condensed soft matter physics. Both IDP and LLPS/MLO fields are undergoing explosive development and generate the ever-increasing mountain of crucial data. These new data provide answers to so many long-standing questions that it is difficult to imagine that in the very recent past, protein scientists and cellular biologists operated without taking these revolutionary concepts into account. The goal of this essay is not to deliver a comprehensive review of the IDP-LLPS-MLO field but to provide a brief and rather subjective outline of some of the recent developments in these exciting fields.


Assuntos
Fenômenos Bioquímicos , Proteínas Intrinsicamente Desordenadas , Condensados Biomoleculares , Proteínas Intrinsicamente Desordenadas/química , Organelas/metabolismo
20.
Biosci Trends ; 16(5): 330-345, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36273890

RESUMO

Phase separation refers to a phenomenon in which different components of a cell collide and fuse with each other to form droplets such that some components are encapsulated within the droplet and some are blocked outside. It is prevalent in eukaryotic cells and is closely related to genome assembly and transcriptional regulation, enabling multiple biological functions. With the development of high-throughput sequencing technologies, several non-coding RNAs (ncRNAs) have been shown to play an important role in epigenetic regulation of gene expression in addition to their roles at the transcriptional and post-transcriptional levels. In addition, some ncRNAs are involved in the formation of membraneless organelles (MLOs), the regulation of genomic stability and stress response through phase separation. Notably, phase separation can also affect the biogenesis, processing and maturation of ncRNAs. This review summarizes recent discoveries related to the relationship between ncRNAs and phase separation, providing new perspectives to guide future interventions.


Assuntos
Epigênese Genética , RNA não Traduzido , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA