Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38127241

RESUMO

The use of antibiotics unbalances the intestinal microbiota. Probiotics, prebiotics, and synbiotics are alternatives for these unbalances. The effects of a new synbiotic composed of probiotic Saccharomyces boulardii CNCM I-745 and fructans from Agave salmiana (fAs) as prebiotics were assessed to modulate the intestinal microbiota. Two probiotic presentations, the commercial probiotic (CP) and the microencapsulated probiotic (MP) to improve those effects, were used to prepare the synbiotics and feed Wistar rats subjected to antibiotics (AB). Eight groups were studied, including five controls and three groups to modulate the microbiota after the use of antibiotics: G5: AB + MP-synbiotic, G6: AB + CP-synbiotic, and G8: AB + fAs. All treatments were administered daily for 7 days. On days 7 and 21, euthanasia was performed, cecum tissue was recovered and used to evaluate histological analysis and to study microphotograph by TEM, and finally, bacterial DNA was extracted and 16S rRNA gene metabarcode sequencing was performed. Histological analysis showed less epithelial damage and more abundance of the intestinal microbiota in the groups G5, G6, and G8 in comparison with the AB control group after 7 days. Microphotograph of the cecum at 2 weeks post treatment showed that G5 and G6 presented beneficial effects in epithelial reconstruction. Interestingly, in the groups that used the synbiotic without AB (G3 and G4) in addition to contributing to the recovery of the autochthonous microbiota, it promotes the development of beneficial microorganisms; those results were also achieved in the groups that used the synbiotic with AB enhancing the bacterial diversity and regulating the impact of AB.

2.
Biodivers Data J ; 11: e104757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711366

RESUMO

The Malayan tiger (Pantheratigrisjacksoni) is a critically endangered species native to the Malaysian Peninsula. To imitate wild conditions where tigers do not hunt every day, numerous wildlife sanctuaries do not feed their tigers daily. However, the effects of fasting on the gut microbiota of captive Malayan tigers remains unknown. This study aimed to characterise the gut microbiota of captive Malayan tigers by comparing their microbial communities during fasting versus normal feeding conditions. This study was conducted at the Melaka Zoo, Malaysian Peninsula and involved Malayan tigers fasted every Monday. In total, ten faecal samples of Malayan tiger, two of Bengal tiger (outgroup) and four of lion (outgroup) were collected and analysed for metabarcoding targeting the 16S rRNA V3-V4 region. In total, we determined 14 phyla, 87 families, 167 genera and 53 species of gut microbiome across Malayan tiger samples. The potentially harmful bacterial genera found in this study included Fusobacterium, Bacteroides, Clostridium sensu stricto 1, Solobacterium, Echerichiashigella, Ignatzschineria and Negativibacillus. The microbiome in the fasting phase had a higher composition and was more diverse than in the feeding phase. The present findings indicate a balanced ratio in the dominant phyla, reflecting a resetting of the imbalanced gut microbiota due to fasting. These findings can help authorities in how to best maintain and improve the husbandry and health of Malayan tigers in captivity and be used for monitoring in ex-situ veterinary care unit.

3.
J Fungi (Basel) ; 9(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504709

RESUMO

Candida auris is an emerging global public health threat and is resistant to most antifungal agents. Though fungi are significant pathogens for animals, the role of C. auris in animal health remains unexplored. Here, we analysed the microbial cultures of skin and ear swabs of 87 dogs in Delhi and performed fungal meta-barcode sequencing of ear and skin samples of 7 dogs with confirmed otitis externa (OE). Overall, 4.5% of dogs (4/87) with chronic skin infections contained evidence of C. auris in their ear canal (n = 3) and on their skin surface (n = 1). Of the three OE dogs with C. auris infection/colonisation, a diversity of fungi was observed, and their meta-barcode ITS sequence reads for C. auris ranged from 0.06% to 0.67%. Whole-genome sequencing of six C. auris strains obtained in culture from two dogs showed relatedness with Clade I clinical strains. The report highlights the isolation of C. auris from an animal source; however, the routes of transmission of this yeast to dogs and the clinical significance of transmission between dogs and humans remain to be investigated.

4.
Environ Res ; 219: 115065, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535389

RESUMO

With the growing numbers of the urban population, an increasing number of commuters have relied on subway systems for rapid transportation in daily life. Analyzing the temporal distribution of air microbiomes in subway environments is crucial for the assessment and monitoring of air quality in the subway system, especially with regard to public health. This study employed culture-independent metabarcode sequencing to analyze bacterial diversity and variations in bacterial compositions associated with bioaerosols collected from a subway station in Bangkok over a four-month period. The bacteria obtained were found to consist primarily of Proteobacteria, Firmicutes, and Actinobacteria, with variations at the family, genus, and species levels among samples obtained in different months. The vast majority of these bacteria are most likely derived from outside environments and human body sources. Many of the bacteria found in Bangkok subway station were also identified as "core microorganisms" of subway environments around the world, as suggested by the MetaSUB Consortium. The diversity of bacterial communities was shown to be influenced by several air quality variables, especially ambient temperature and the quantity of particulate matters, which showed positive correlations with several bacterial species such as Acinetobacter lwoffii, Staphylococcus spp., and Moraxella osloensis. In addition, metabolic profiles inferred from metabarcode-derived bacterial diversity showed significant variations across different sampling times and sites and can be used as a starting point to further explore the functional roles of specific groups of bacteria in the subway environment. This study thus introduced the information required for surveillance of microbiological impacts and their contributions to the well-being of subway commuters in Bangkok.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbiota , Ferrovias , Humanos , Tailândia , Meios de Transporte , Material Particulado/análise , Bactérias/genética , Poluentes Atmosféricos/análise , Monitoramento Ambiental
5.
Biodivers Data J ; 11: e106947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318520

RESUMO

Background: The northern Adriatic is characterised as the coldest and most productive marine area of the Mediterranean, which is due to high nutrient levels introduced by river discharges, the largest of which is the Italian Po River (at the same time also the largest freshwater input into the Mediterranean). The northern Adriatic is a very shallow marine ecosystem with ocean current patterns that result in long retention times of plankton in the area. The northern Adriatic phytoplankton biodiversity and abundance are well-studied, through many scientific and long-term monitoring reports. These datasets were based on phytoplankton morphological traits traditionally obtained with light microscopy. The most recent comprehensive eastern Adriatic phytoplankton checklist was published more than 20 years ago and is still valuable today. Since phytoplankton taxonomy and systematics are constantly being reviewed (partly also due to new molecular methods of species identification that complement classical methodologies), checklists need to be updated and complemented. Today, metabarcoding of molecular markers gains more and more importance in biodiversity research and monitoring. Here, we report the use of high throughput sequencing methods to re-examine taxonomic richness and provide updated knowledge of phytoplankton diversity in the eastern northern Adriatic to complement the standardised light microscopy method. New information: This study aimed to report an up-to-date list of the phytoplankton taxonomic richness and phylogenetic relationships in the eastern northern Adriatic, based on sequence variability of barcoding genes resolved with advanced molecular tools, namely metabarcoding. Here, metabarcoding is used to complement standardised light microscopy to advance conventional monitoring and research of phytoplankton communities for the purpose of assessing biodiversity and the status of the marine environments. Monthly two-year net sampling targeted six phytoplankton groups including Bacillariophyceae (diatoms) and Chrysophyceae (golden algae) belonging to Ochrophyta, Dinophyceae (dinoflagellates), Cryptophyceae (cryptophytes), Haptophyta (mostly coccolithophorids) and Chlorophyta with Prasinophyceae (prasinophytes) and Chlorophyceae (protist green algae). Generated sequence data were taxonomically assigned and redistributed in two kingdoms, five classes, 32 orders, 49 families and 67 genera. The most diverse group were dinoflagellates, comprising of 34 found genera (48.3%), following by diatoms with 23 (35.4%) and coccolithophorids with three genera (4.0%). In terms of genetic diversity, results were a bit different: a great majority of sequences with one nucleotide tolerance (ASVs, Amplicon sequence variants) assigned to species or genus level were dinoflagellates (83.8%), 13.7% diatoms and 1.6% Chlorophyta, respectively. Although many taxa have not been detected that have been considered as common in this area, metabarcoding revealed five diatoms and 20 dinoflagellate genera that were not reported in previous checklists, along with a few species from other targeted groups that have been reported previously. We here describe the first comprehensive 18S metabarcode inventory for the northern Adriatic Sea.

6.
Food Microbiol ; 101: 103878, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579846

RESUMO

Microbes play key roles in animal welfare and food safety but there is little understanding of whether microbiomes associated with livestock vary in space and time. Here we analysed the bacteria associated with the carcasses of the same breed of 28 poultry broiler flocks at different stages of processing across two climatically similar UK regions over two seasons with 16S metabarcode DNA sequencing. Numbers of taxa types did not differ by region, but did by season (P = 1.2 × 10-19), and numbers increased with factory processing, especially in summer. There was also a significant (P < 1 × 10-4) difference in the presences and abundances of taxa types by season, region and factory processing stage, and the signal for seasonal and regional differences remained highly significant on final retail products. This study therefore revealed that both season and region influence the types and abundances of taxa on retail poultry products. That poultry microbiomes differ in space and time should be considered when testing the efficacy of microbial management interventions designed to increase animal welfare and food safety: these may have differential effects on livestock depending on location and timing.


Assuntos
Microbiota , Aves Domésticas , Estações do Ano , Animais , Galinhas/microbiologia , Gado/microbiologia , Aves Domésticas/microbiologia , RNA Ribossômico 16S , Reino Unido
7.
Divers Distrib ; 28(9): 1922-1933, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38269301

RESUMO

Aim: The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location: Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods: We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 µm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 µm dataset). Results: In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 µm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions: The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.

8.
Biodivers Data J ; 9: e71378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594153

RESUMO

Molecular sequence data is an essential component for many biological fields of study. The strength of these data is in their ability to be centralised and compared across research studies. There are many online repositories for molecular sequence data, some of which are very large accumulations of varying data types like NCBI's GenBank. Due to the size and the complexity of the data in these repositories, challenges arise in searching for data of interest. While data repositories exist for molecular markers, taxa and other specific research interests, repositories may not contain, or be suitable for, more specific applications. Manually accessing, searching, downloading, accumulating, dereplicating and cleaning data to construct project-specific datasets is time-consuming. In addition, the manual assembly of datasets presents challenges with reproducibility. Here, we present the MACER package to assist researchers in assembling molecular datasets and provide reproducibility in the process.

9.
Extremophiles ; 25(4): 369-384, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117569

RESUMO

As part of the reconstruction of the Brazilian Antarctic Station on King George Island, three areas of moss carpet were transplanted to minimize the impact of the new facilities on the local biodiversity. A total of 650 m2 of moss carpet was transplanted to neighboring but previously uncolonized locations and has subsequently survived for the last 3 years. Antarctic moss carpets typically comprise low moss species diversity and are often monospecific. We investigated the cryptic biodiversity that was transplanted along with the carpets using a metabarcoding approach through high throughput sequencing. We targeted 16S rRNA for Bacteria and Archaea, ITS for Fungi and Viridiplantae and Cox1 for Metazoa. We detected DNA representing 263 taxa from five Kingdoms (Chromista, Fungi, Metazoa, Protista and Viridiplantae), two Domains (Archaea and Bacteria) and 33 Phyla associated with the carpet. This diversity included one Archaea, 189 Bacteria, 24 Chromista, 19 Fungi, eight Metazoa, seven Protista and 16 Viridiplantae. Bacteria was the most abundant, rich and diverse group, with Chromista second in diversity and richness. Metazoa was less diverse but second highest in dominance. This is the first study to attempt transplanting a significant area of moss carpet to minimize anthropogenic environmental damage in Antarctica and to use metabarcoding as a proxy to assess diversity associated with Antarctic moss carpets, further highlighting the importance of such habitats for other organisms and their importance for conservation.


Assuntos
Briófitas , Pisos e Cobertura de Pisos , Regiões Antárticas , Biodiversidade , RNA Ribossômico 16S
10.
BMC Bioinformatics ; 22(1): 256, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011275

RESUMO

BACKGROUND: Pseudogenes are non-functional copies of protein coding genes that typically follow a different molecular evolutionary path as compared to functional genes. The inclusion of pseudogene sequences in DNA barcoding and metabarcoding analysis can lead to misleading results. None of the most widely used bioinformatic pipelines used to process marker gene (metabarcode) high throughput sequencing data specifically accounts for the presence of pseudogenes in protein-coding marker genes. The purpose of this study is to develop a method to screen for nuclear mitochondrial DNA segments (nuMTs) in large COI datasets. We do this by: (1) describing gene and nuMT characteristics from an artificial COI barcode dataset, (2) show the impact of two different pseudogene removal methods on perturbed community datasets with simulated nuMTs, and (3) incorporate a pseudogene filtering step in a bioinformatic pipeline that can be used to process Illumina paired-end COI metabarcode sequences. Open reading frame length and sequence bit scores from hidden Markov model (HMM) profile analysis were used to detect pseudogenes. RESULTS: Our simulations showed that it was more difficult to identify nuMTs from shorter amplicon sequences such as those typically used in metabarcoding compared with full length DNA barcodes that are used in the construction of barcode libraries. It was also more difficult to identify nuMTs in datasets where there is a high percentage of nuMTs. Existing bioinformatic pipelines used to process metabarcode sequences already remove some nuMTs, especially in the rare sequence removal step, but the addition of a pseudogene filtering step can remove up to 5% of sequences even when other filtering steps are in place. CONCLUSIONS: Open reading frame length filtering alone or combined with hidden Markov model profile analysis can be used to effectively screen out apparent pseudogenes from large datasets. There is more to learn from COI nuMTs such as their frequency in DNA barcoding and metabarcoding studies, their taxonomic distribution, and evolution. Thus, we encourage the submission of verified COI nuMTs to public databases to facilitate future studies.


Assuntos
Código de Barras de DNA Taxonômico , Pseudogenes , Núcleo Celular , DNA Mitocondrial , Mitocôndrias/genética , Filogenia , Pseudogenes/genética , Análise de Sequência de DNA
11.
Microorganisms ; 9(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924464

RESUMO

The microbiota associated with the rhizosphere is responsible for crucial processes. Understanding how the plant and its bacterial community interact is of great importance to face the upcoming agricultural and viticultural challenges. The composition of the bacterial communities associated with the rhizosphere of grapevines is the result of the interaction between many drivers: biogeography, edaphic factors, soil management and plant genotype. The experimental design of this study aimed to reduce the variability resulting from all factors except the genotype of the rootstock. This was made possible by investigating four ungrafted grapevine rootstock varieties of the same age, grown on the same soil under the same climatic conditions and managed identically. The bacterial communities associated with the rhizosphere of the rootstocks 1103 Paulsen, 140 Ruggeri, 161-49 Couderc and Kober 5BB were characterized with the amplicon based sequencing technique, targeting regions V4-V5 of 16S rRNA gene. Linear discriminant analysis effect Size (LEfSe) analysis was performed to determine differential abundant taxa. The four rootstocks showed similarities concerning the structure of the bacteria assemblage (richness and evenness). Nonetheless, differences were detected in the composition of the bacterial communities. Indeed, all investigated rootstocks recruited communities with distinguishable traits, thus confirming the role of rootstock genotype as driver of the bacteria composition.

12.
Mol Ecol Resour ; 21(8): 2832-2846, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33749132

RESUMO

DNA barcoding and metabarcoding are now widely used to advance species discovery and biodiversity assessments. High-throughput sequencing (HTS) has expanded the volume and scope of these analyses, but elevated error rates introduce noise into sequence records that can inflate estimates of biodiversity. Denoising -the separation of biological signal from instrument (technical) noise-of barcode and metabarcode data currently employs abundance-based methods which do not capitalize on the highly conserved structure of the cytochrome c oxidase subunit I (COI) region employed as the animal barcode. This manuscript introduces debar, an R package that utilizes a profile hidden Markov model to denoise indel errors in COI sequences introduced by instrument error. In silico studies demonstrated that debar recognized 95% of artificially introduced indels in COI sequences. When applied to real-world data, debar reduced indel errors in circular consensus sequences obtained with the Sequel platform by 75%, and those generated on the Ion Torrent S5 by 94%. The false correction rate was less than 0.1%, indicating that debar is receptive to the majority of true COI variation in the animal kingdom. In conclusion, the debar package improves DNA barcode and metabarcode workflows by aiding the generation of more accurate sequences aiding the characterization of species diversity.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Animais , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
13.
Mol Ecol ; 29(16): 3144-3154, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32654383

RESUMO

Knowledge of how animal species use food resources available in the environment can increase our understanding of many ecological processes. However, obtaining this information using traditional methods is difficult for species feeding on a large variety of food items in highly diverse environments. We amplified the DNA of plants for 306 scat and 40 soil samples, and applied an environmental DNA metabarcoding approach to investigate food preferences, degree of diet specialization and diet overlap of seven herbivore rodent species of the genus Ctenomys distributed in southern and midwestern Brazil. The metabarcoding approach revealed that these species consume more than 60% of the plant families recovered in soil samples, indicating generalist feeding habits of ctenomyids. The family Poaceae was the most common food resource retrieved in scats of all species as well in soil samples. Niche overlap analysis indicated high overlap in the plant families and molecular operational taxonomic units consumed, mainly among the southern species. Interspecific differences in diet composition were influenced, among other factors, by the availability of resources in the environment. In addition, our results provide support for the hypothesis that the allopatric distributions of ctenomyids allow them to exploit the same range of resources when available, possibly because of the absence of interspecific competition.


Assuntos
Código de Barras de DNA Taxonômico , Roedores , Animais , Brasil , Dieta , Herbivoria , Roedores/genética
14.
Dis Aquat Organ ; 137(2): 145-157, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31942860

RESUMO

Seagrasses create foundational habitats in coastal ecosystems. One contributing factor to their global decline is disease, primarily caused by parasites in the genus Labyrinthula. To explore the relationship between seagrass and Labyrinthula spp. diversity in coastal waters, we examined the diversity and microhabitat association of Labyrinthula spp. in 2 inlets on Florida's Atlantic Coast, the Indian River Lagoon (IRL) and Banana River. We used amplicon-based high throughput sequencing with 2 newly designed primers to amplify Labyrinthula spp. from 5 seagrass species, water, and sediments to determine their spatial distribution and microhabitat associations. The SSU primer set identified 12 Labyrinthula zero-radius operational taxonomic units (ZOTUs), corresponding to at least 8 putative species. The ITS1 primer set identified 2 ZOTUs, corresponding to at least 2 putative species. Based on our phylogenetic analyses, which include sequences from previous studies that assigned seagrass-related pathogenicity to Labyrinthula clades, all but one of the ZOTUs that we recovered with the SSU primers were from non-pathogenic species, while the 2 ZOTUs recovered with the ITS1 primers were from pathogenic species. Some of the ZOTUs were widespread across the sampling sites and microhabitats (e.g. SSU ZOTU_10), and most were present in more than one site. Our results demonstrate that targeted metabarcoding is a useful tool for examining the relationships between seagrass and Labyrinthula diversity in coastal waters.


Assuntos
Rios , Estramenópilas , Animais , Ecossistema , Florida , Filogenia
15.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836576

RESUMO

Despite glyphosate's wide use for weed control in agriculture, questions remain about the herbicide's effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp.IMPORTANCE Increasing the efficiency of food production systems while reducing negative environmental effects remains a key societal challenge to successfully meet the needs of a growing global population. The herbicide glyphosate has become a nearly ubiquitous component of agricultural production across the globe, enabling an increasing adoption of no-till agriculture. Despite this widespread use, there remains considerable debate on the consequences of glyphosate exposure. In this paper, we examine the effect of glyphosate on soil microbial communities associated with the roots of glyphosate-resistant crops. Using metabarcoding techniques, we evaluated prokaryotic and fungal communities from agricultural soil samples (n = 768). No effects of glyphosate were found on soil microbial communities associated with glyphosate-resistant corn and soybean varieties across diverse farming systems.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Glicina/análogos & derivados , Herbicidas/administração & dosagem , Microbiota , Raízes de Plantas/microbiologia , Microbiologia do Solo , Glicina/administração & dosagem , Maryland , Microbiota/efeitos dos fármacos , Mississippi , Micobioma , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Glifosato
16.
Microorganisms ; 7(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717798

RESUMO

Metabarcoding and high-throughput sequencing methods have greatly improved our understanding of protist diversity. Although the V4 region of small subunit ribosomal DNA (SSU-V4 rDNA) is the most widely used marker in DNA metabarcoding of eukaryotic microorganisms, doubts have recently been raised about its suitability. Here, using the widely distributed ciliate genus Pseudokeronopsis as an example, we assessed the potential of SSU-V4 rDNA and four other nuclear and mitochondrial markers for species delimitation and phylogenetic reconstruction. Our studies revealed that SSU-V4 rDNA is too conservative to distinguish species, and a threshold of 97% and 99% sequence similarity detected only one and three OTUs, respectively, from seven species. On the basis of the comparative analysis of the present and previously published data, we proposed the multilocus marker including the nuclear 5.8S rDNA combining the internal transcribed spacer regions (ITS1-5.8S-ITS2) and the hypervariable D2 region of large subunit rDNA (LSU-D2) as an ideal barcode rather than the mitochondrial cytochrome c oxidase subunit 1 gene, and the ITS1-5.8S-ITS2 as a candidate metabarcoding marker for ciliates. Furthermore, the compensating base change and tree-based criteria of ITS2 and LSU-D2 were useful in complementing the DNA barcoding and metabarcoding methods by giving second structure and phylogenetic evidence.

17.
Viruses ; 10(9)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217078

RESUMO

"Megaviridae" is a proposed family of giant viruses infecting unicellular eukaryotes. These viruses are ubiquitous in the sea and have impact on marine microbial community structure and dynamics through their lytic infection cycle. However, their diversity and biogeography have been poorly characterized due to the scarce detection of Megaviridae sequences in metagenomes, as well as the limitation of reference sequences used to design specific primers for this viral group. Here, we propose a set of 82 degenerated primers (referred to as MEGAPRIMER), targeting DNA polymerase genes (polBs) of Megaviridae. MEGAPRIMER was designed based on 921 Megaviridae polBs from sequenced genomes and metagenomes. By applying this primer set to environmental DNA meta-barcoding of a coastal seawater sample, we report 5595 non-singleton operational taxonomic units (OTUs) of Megaviridae at 97% nucleotide sequence identity. The majority of the OTUs were found to form diverse clades, which were phylogenetically distantly phylogenetically related to known viruses such as Mimivirus. The Megaviridae OTUs detected in this study outnumber the giant virus OTUs identified in previous individual studies by more than an order of magnitude. Hence, MEGAPRIMER represents a useful tool to study the diversity of Megaviridae at the population level in natural environments.


Assuntos
Biodiversidade , Vírus Gigantes/classificação , Vírus Gigantes/genética , Reação em Cadeia da Polimerase , Água do Mar/virologia , Microbiologia da Água , Biologia Computacional/métodos , Genoma Viral , Metagenoma , Metagenômica/métodos , Filogenia , Reação em Cadeia da Polimerase/métodos
18.
Protist ; 168(2): 183-196, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28284110

RESUMO

Deciphering patterns of protistan taxa is a crucial step for understanding anthropogenic and environmental impacts on biogeography. We characterized and compared protistan communities from environmental samples collected along a major shipping corridor, the Panama Canal, and the Bocas del Toro archipelago. We used metabarcoding with high throughput sequencing (HTS) with the V4 hypervariable region of the ribosomal gene complex (rDNA). We detected many protistan taxa, including a variety of parasitic and toxic taxa. There were 1,296 OTUs shared across all three regions, with an additional 342-1,526 OTUs occurring across two or more regions, suggesting some mixing within the Caribbean and across the Isthmus. In general, this mixing did not impact community similarity, which was primarily distinct across regions. When OTUs identified as gregarines were analyzed separately, most samples grouped by region and communities were distinct across the Canal. Shipping traffic through the Panama Canal could move some taxa across regions; however, different environmental conditions in the two oceans may limit their establishment. Overall our results suggest that contemporary protistan biogeographic patterns are likely caused by a complex combination of factors, including anthropogenic dispersal and environmental tolerance.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Apicomplexa/classificação , Apicomplexa/genética , Biodiversidade , Região do Caribe , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Ilhas , Oceano Pacífico , Zona do Canal do Panamá
19.
Microb Ecol ; 71(3): 530-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26476551

RESUMO

Ships' ballast water (BW) commonly moves macroorganisms and microorganisms across the world's oceans and along coasts; however, the majority of these microbial transfers have gone undetected. We applied high-throughput sequencing methods to identify microbial eukaryotes, specifically emphasizing the protistan parasites, in ships' BW collected from vessels calling to the Chesapeake Bay (Virginia and Maryland, USA) from European and Eastern Canadian ports. We utilized tagged-amplicon 454 pyrosequencing with two general primer sets, amplifying either the V4 or V9 domain of the small subunit (SSU) of the ribosomal RNA (rRNA) gene complex, from total DNA extracted from water samples collected from the ballast tanks of bulk cargo vessels. We detected a diverse group of protistan taxa, with some known to contain important parasites in marine systems, including Apicomplexa (unidentified apicomplexans, unidentified gregarines, Cryptosporidium spp.), Dinophyta (Blastodinium spp., Euduboscquella sp., unidentified syndinids, Karlodinium spp., Syndinium spp.), Perkinsea (Parvilucifera sp.), Opisthokonta (Ichthyosporea sp., Pseudoperkinsidae, unidentified ichthyosporeans), and Stramenopiles (Labyrinthulomycetes). Further characterization of groups with parasitic taxa, consisting of phylogenetic analyses for four taxa (Cryptosporidium spp., Parvilucifera spp., Labyrinthulomycetes, and Ichthyosporea), revealed that sequences were obtained from both known and novel lineages. This study demonstrates that high-throughput sequencing is a viable and sensitive method for detecting parasitic protists when present and transported in the ballast water of ships. These data also underscore the potential importance of human-aided dispersal in the biogeography of these microbes and emerging diseases in the world's oceans.


Assuntos
Biodiversidade , Doenças Transmissíveis/parasitologia , Eucariotos/isolamento & purificação , Parasitos/isolamento & purificação , Água do Mar/parasitologia , Águas Residuárias/parasitologia , Animais , Doenças Transmissíveis/transmissão , Eucariotos/classificação , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Parasitos/classificação , Parasitos/genética , Filogenia , Navios
20.
Rev. biol. trop ; 62(4): 1273-1284, oct.-dic. 2014.
Artigo em Inglês | LILACS | ID: lil-753689

RESUMO

Genetic material (short DNA fragments) left behind by species in nonliving components of the environment (e.g. soil, sediment, or water) is defined as environmental DNA (eDNA). This DNA has been previously described as particulate DNA and has been used to detect and describe microbial communities in marine sediments since the mid-1980’s and phytoplankton communities in the water column since the early-1990’s. More recently, eDNA has been used to monitor invasive or endangered vertebrate and invertebrate species. While there is a steady increase in the applicability of eDNA as a monitoring tool, a variety of eDNA applications are emerging in fields such as forensics, population and community ecology, and taxonomy. This review provides scientist an understanding of the methods underlying eDNA detection as well as applications, key methodological considerations, and emerging areas of interest for its use in ecology and conservation of freshwater and marine environments. Rev. Biol. Trop. 62 (4): 1273-1284. Epub 2014 December 01.


El material genético que liberan los organismos en los componentes no vivos del ecosistema (aire, suelo, agua y sedimentos) recibe el nombre de ADN ambiental (ADNa) (eDNA, por su nombre en inglés). Este ADN previamente definido como ADN particulado ha sido utilizado desde mediados de la década de los ochenta y principios de los noventas para describir la composición de las comunidades microbianas en sedimentos marinos y de comunidades microbianas y fitoplanctónicas en la columna de agua. Recientemente el ADNa es utilizado principalmente para la detección y monitoreo de especies invasoras y en peligro. No obstante, existen múltiples áreas en las que este método puede ser utilizado como por ejemplo en ciencias forenses, ecología de poblaciones y comunidades, y taxonomía. Esta revisión proporciona información sobre esta nueva herramienta molecular, sus actuales y futuras aplicaciones, historia, principales consideraciones metodológicas y áreas emergentes para su uso en ecología y conservación de ambientes marinos y de agua dulce.


Assuntos
Animais , DNA , Ecossistema , Monitoramento Ambiental/métodos , Água Doce , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA