Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062775

RESUMO

Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.


Assuntos
Neoplasias da Mama , Exercício Físico , Músculo Esquelético , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Qualidade de Vida , Terapia por Exercício/métodos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo
2.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062787

RESUMO

Ferroptosis is a type of nonapoptotic cell death that is characteristically caused by phospholipid peroxidation promoted by radical reactions involving iron. Researchers have identified many of the protein factors that are encoded by genes that promote ferroptosis. Glutathione peroxidase 4 (GPX4) is a key enzyme that protects phospholipids from peroxidation and suppresses ferroptosis in a glutathione-dependent manner. Thus, the dysregulation of genes involved in cysteine and/or glutathione metabolism is closely associated with ferroptosis. From the perspective of cell dynamics, actively proliferating cells are more prone to ferroptosis than quiescent cells, which suggests that radical species generated during oxygen-involved metabolism are responsible for lipid peroxidation. Herein, we discuss the initial events involved in ferroptosis that dominantly occur in the process of energy metabolism, in association with cysteine deficiency. Accordingly, dysregulation of the tricarboxylic acid cycle coupled with the respiratory chain in mitochondria are the main subjects here, and this suggests that mitochondria are the likely source of both radical electrons and free iron. Since not only carbohydrates, but also amino acids, especially glutamate, are major substrates for central metabolism, dealing with nitrogen derived from amino groups also contributes to lipid peroxidation and is a subject of this discussion.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Oxirredução , Humanos , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo
3.
Biosci Rep ; 44(7)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38990147

RESUMO

Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Selênio , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Selênio/metabolismo , Selênio/farmacologia , Metabolômica , Linhagem Celular Tumoral , Células A549 , Espécies Reativas de Oxigênio/metabolismo , Flavonoides
4.
FASEB J ; 38(11): e23709, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38809700

RESUMO

Brown adipose tissue (BAT) is correlated to cardiovascular health in rodents and humans, but the physiological role of BAT in the initial cardiac remodeling at the onset of stress is unknown. Activation of BAT via 48 h cold (16°C) in mice following transverse aortic constriction (TAC) reduced cardiac gene expression for LCFA uptake and oxidation in male mice and accelerated the onset of cardiac metabolic remodeling, with an early isoform shift of carnitine palmitoyltransferase 1 (CPT1) toward increased CPT1a, reduced entry of long chain fatty acid (LCFA) into oxidative metabolism (0.59 ± 0.02 vs. 0.72 ± 0.02 in RT TAC hearts, p < .05) and increased carbohydrate oxidation with altered glucose transporter content. BAT activation with TAC reduced early hypertrophic expression of ß-MHC by 61% versus RT-TAC and reduced pro-fibrotic TGF-ß1 and COL3α1 expression. While cardiac natriuretic peptide expression was yet to increase at only 3 days TAC, Nppa and Nppb expression were elevated in Cold TAC versus RT TAC hearts 2.7- and 2.4-fold, respectively. Eliminating BAT thermogenic activation with UCP1 KO mice eliminated differences between Cold TAC and RT TAC hearts, confirming effects of BAT activation rather than autonomous cardiac responses to cold. Female responses to BAT activation were blunted, with limited UCP1 changes with cold, partly due to already activated BAT in females at RT compared to thermoneutrality. These data reveal a previously unknown physiological mechanism of UCP1-dependent BAT activation in attenuating early cardiac hypertrophic and profibrotic signaling and accelerating remodeled metabolic activity in the heart at the onset of cardiac stress.


Assuntos
Tecido Adiposo Marrom , Fibrose , Proteína Desacopladora 1 , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos , Masculino , Proteína Desacopladora 1/metabolismo , Fibrose/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Fisiológico , Remodelação Ventricular/fisiologia , Camundongos Knockout , Temperatura Baixa
5.
J Cell Physiol ; 239(8): e31290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38686599

RESUMO

Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.

6.
Chemosphere ; 353: 141637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462177

RESUMO

Polyaromatic benzo[a]pyrene (B[a]P) is a toxic carcinogenic environmental pollutant, and the use of microorganisms to remediate B[a]P contamination is considered to be one of the most effective strategies. However, there is still a gap in studying the metabolic remodeling of microorganisms under B[a]P stress. In this study, our systematically investigated the effects of B[a]P on the metabolism of Bacillus subtilis MSC4 based on transcriptomic, molecular and biochemical analyses. The results showed that in response to B[a]P stress, MSC4 formed more biofilm matrix and endospores, the structure of the endospores also was changed, which led to a reduction in their resistance and made them more difficult to germinate. In addition to an increase in glycolysis activity, the activities of tricarboxylic acid cycle, pentose phosphate pathway and the electron transport chain were decreased. B[a]P stress forced MSC4 to strengthen arginine synthesis, urea cycle, and urea decomposition, meanwhile, synthesize more ribonucleotides. The activity of DNA replication, transcription activities and the expression of multiple ribosomal protein genes were reduced. Moreover, all of the reported enzymes involved in B[a]P degradation showed decreased transcript abundance, and the degradation of B[a]P caused significant up-regulation of the gene expression of the acid inducible enzyme OxdC and the synthesis of acetoin. In addition, the cytotoxicity of B[a]P to bacteria was directly displayed in four aspects: increased intracellular level of reactive oxygen species (ROS), elevated cell membrane permeability, up-regulation of the cell envelope stress-sensing two-component system LiaRS, and downregulation of siderophores biosynthesis. Finally, B[a]P also caused morphological changes in the cells, with some cells exhibiting significant deformation and concavity. These findings provide effective research directions for targeted improvement the cellular activity of B[a]P-degrading strains, and is beneficial for further application of microorganisms to remediate B[a]P -contaminated soils.


Assuntos
Bacillus subtilis , Benzo(a)pireno , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glicólise , Perfilação da Expressão Gênica , Ureia/metabolismo
7.
Cancer Lett ; 587: 216649, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38311052

RESUMO

Pancreatic cancer is a highly malignant solid tumor with a poor prognosis and a high mortality rate. Thus, exploring the mechanisms underlying the development and progression of pancreatic cancer is critical for identifying targets for diagnosis and treatment. Two important hallmarks of cancer-metabolic remodeling and epigenetic reprogramming-are interconnected and closely linked to regulate one another, creating a complex interaction landscape that is implicated in tumorigenesis, invasive metastasis, and immune escape. For example, metabolites can be involved in the regulation of epigenetic enzymes as substrates or cofactors, and alterations in epigenetic modifications can in turn regulate the expression of metabolic enzymes. The crosstalk between metabolic remodeling and epigenetic reprogramming in pancreatic cancer has gained considerable attention. Here, we review the emerging data with a focus on the reciprocal regulation of metabolic remodeling and epigenetic reprogramming. We aim to highlight how these mechanisms could be applied to develop better therapeutic strategies.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Epigênese Genética
8.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391918

RESUMO

BACKGROUND: Cancer-associated thrombosis (CAT) and venous thromboembolism (VTE) are frequent cancer-related complications associated with high mortality; thus, this urges the identification of predictive markers. Immune checkpoint inhibitors (ICIs) used in cancer immunotherapy allow T-cell activation against cancer cells. Retrospective studies showed increased VTE following ICI administration in some patients. Non-small cell lung cancer (NSCLC) patients are at high risk of thrombosis and thus, the adoption of immunotherapy, as a first-line treatment, seems to be associated with coagulation-fibrinolysis derangement. METHODS: We pharmacologically modulated NSCLC cell lines in co-culture with CD8+ T-cells (TCD8+) and myeloid-derived suppressor cells (MDSCs), isolated from healthy blood donors. The effects of ICIs Nivolumab and Ipilimumab on NSCLC cell death were assessed by annexin V and propidium iodide (PI) flow cytometry analysis. The potential procoagulant properties were analyzed by in vitro clotting assays and enzyme-linked immunosorbent assays (ELISAs). The metabolic remodeling induced by the ICIs was explored by 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS: Flow cytometry analysis showed that TCD8+ and ICIs increase cell death in H292 and PC-9 cells but not in A549 cells. Conditioned media from NSCLC cells exposed to TCD8+ and ICI induced in vitro platelet aggregation. In A549, Podoplanin (PDPN) levels increased with Nivolumab. In H292, ICIs increased PDPN levels in the absence of TCD8+. In PC-9, Ipilimumab decreased PDPN levels, this effect being rescued by TCD8+. MDSCs did not interfere with the effect of TCD8+ in the production of TF or PDPN in any NSCLC cell lines. The exometabolome showed a metabolic remodeling in NSCLC cells upon exposure to TCD8+ and ICIs. CONCLUSIONS: This study provides some insights into the interplay of immune cells, ICIs and cancer cells influencing the coagulation status. ICIs are important promoters of coagulation, benefiting from TCD8+ mediation. The exometabolome analysis highlighted the relevance of acetate, pyruvate, glycine, glutamine, valine, leucine and isoleucine as biomarkers. Further investigation is needed to validate this finding in a cohort of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Trombose , Tromboembolia Venosa , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/patologia , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Estudos Retrospectivos
9.
J Cardiovasc Transl Res ; 17(1): 36-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37843752

RESUMO

The heart is the most energy-demanding organ throughout the whole body. Perturbations or failure in energy metabolism contributes to heart failure (HF), which represents the advanced stage of various heart diseases. The poor prognosis and huge economic burden associated with HF underscore the high unmet need to explore novel therapies targeting metabolic modulators beyond conventional approaches focused on neurohormonal and hemodynamic regulators. Emerging evidence suggests that alterations in metabolic substrate reliance, metabolic pathways, metabolic by-products, and energy production collectively regulate the occurrence and progression of HF. In this review, we provide an overview of cardiac metabolic remodeling, encompassing the utilization of free fatty acids, glucose metabolism, ketone bodies, and branched-chain amino acids both in the physiological condition and heart failure. Most importantly, the latest advances in pharmacological interventions are discussed as a promising therapeutic approach to restore cardiac function, drawing insights from recent basic research, preclinical and clinical studies.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Humanos , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , Metabolismo Energético , Cardiopatias/metabolismo , Hemodinâmica
10.
Biochem Pharmacol ; 219: 115953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036191

RESUMO

The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP+ alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.


Assuntos
Antioxidantes , Doenças Mitocondriais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cisplatino/farmacologia , Metabolismo Energético , Espécies Reativas de Oxigênio/metabolismo , Doenças Mitocondriais/metabolismo , Pulmão/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166983, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070581

RESUMO

Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Cisteína , Proliferação de Células , Proteínas que Contêm Bromodomínio , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1030929

RESUMO

Breast cancer is the most diagnosed cancer in women worldwide and the leading cause of most cancer-related deaths, posing a serious threat to women′s health worldwide. At present, although the prognosis of some patients with breast cancer has improved, the emergence of drug resistance and the metastasis and recurrence of breast cancer are still the main reasons for poor prognosis. CD36 is a multiligand transmembrane glycoprotein expressed on various cell types. In recent years, studies have confirmed that CD36 can reshape the lipid metabolism of cancer cells; promote the differentiation of tumor-related macrophages into M2 type and recruitment into tumor tissues; regulate the function of Treg cells, CD8+ T cells, DCs, and other immune cells, and thus promote tumor development. In addition, CD36 is also associated with breast cancer stem cells, metastasis-initiating cells, and breast drug resistant cells. Therefore, CD36 could be an important potential therapeutic target for breast cancer.

13.
J Lipid Res ; 65(2): 100494, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160756

RESUMO

HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Hipertrigliceridemia , Quinolinas , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Proteoma , Diglicerídeos , Lipidômica , Ceramidas , Colesterol/metabolismo , Hipertrigliceridemia/tratamento farmacológico , HDL-Colesterol , Triglicerídeos , Fosfatidilcolinas
14.
Microbiol Spectr ; 11(6): e0034423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823635

RESUMO

IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) colonizes the upper respiratory airways and is resistant to antibiotics. MRSA is a frequently acquired infection in hospital and community settings, including cases of MRSA-induced pneumonia. Multidrug-resistant Staphylococcus aureus and the limited efficacy of antibiotics necessitate alternative strategies for preventing or treating the infection. QingXiaoWuWei decoction (QXWWD) protects against both gut microbiota dysbiosis and MRSA-induced pneumonia. Furthermore, the QXWWD-regulated metabolic remodeling and macrophage gene expression network contribute to its protective effects through the microbiota-short-chain fatty acid axis. The results of this study suggest that QXWWD and its pharmacodynamic compounds might have the potential to prevent and treat pulmonary infections, especially those caused by multidrug-resistant organisms. Our study provides a theoretical basis for the future treatment of pulmonary infectious diseases by manipulating gut microbiota and their metabolites via traditional Chinese medicine.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Microbiota , Infecções Estafilocócicas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Ácidos Graxos Voláteis , Expressão Gênica
15.
Environ Pollut ; 338: 122684, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802284

RESUMO

Intestinal cell metabolism plays an important role in intestine health. Perfluorooctanoic acid (PFOA) exposure could disorder intestinal cell metabolism. However, the mechanisms regarding how the three carbon sources interact under PFOA stress remined to be understood. The present study aimed to dissect the interconnections of glucose, glutamine, and fatty acids in PFOA-treated human colorectal cancer (DLD-1) cells using 13C metabolic flux analysis. The abundance of glycolysis and tricarboxylic acid (TCA) cycle metabolites was decreased in PFOA-treated cells except for succinate, whereas most of amino acids were more abundant. Beside serine and glycine, the levels of metabolites derived from 13C glucose were reduced in PFOA-treated cells, and the pentose phosphate pathway flux was 1.4-fold higher in PFOA-treated cells than in the controls. In reductive glutamine pathway, higher labeled enrichment of citrate, malate, fumarate, and succinate was observed for PFOA-treated cells. The contribution of glucose to fatty acid synthesis in PFOA-treated cells decreased while the contribution of glutamine to fatty acid synthesis increased. Additionally, synthesis of TCA intermediates from fatty acid ß-oxidation was promoted in PFOA-treated cells. All results suggested that metabolic remodeling could happen in intestinal cells exposed to PFOA, which was potentially related to PFOA toxicity relevant with the loss of glucose in biomass synthesis and energy metabolism.


Assuntos
Ácidos Graxos , Glutamina , Humanos , Glutamina/metabolismo , Glucose/metabolismo , Intestinos , Succinatos
16.
Life Sci ; 333: 122122, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774940

RESUMO

Abnormal cardiac metabolism or cardiac metabolic remodeling is reported before the onset of heart failure with reduced ejection fraction (HFrEF) and is known to trigger and maintain the mechanical dysfunction and electrical, and structural abnormalities of the ventricle. A dysregulated cardiac autonomic tone characterized by sympathetic overdrive with blunted parasympathetic activation is another pathophysiological hallmark of HF. Emerging evidence suggests a link between autonomic nervous system activity and cardiac metabolism. Chronic ß-adrenergic activation promotes maladaptive metabolic remodeling whereas cholinergic activation attenuates the metabolic aberrations through favorable modulation of key metabolic regulatory molecules. Restoration of sympathovagal balance by neuromodulation strategies is emerging as a novel nonpharmacological treatment strategy in HF. The current review attempts to evaluate the 'neuro-metabolic axis' in HFrEF and whether neuromodulation can mitigate the adverse metabolic remodeling in HFrEF.


Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico/fisiologia , Coração , Sistema Nervoso Autônomo , Colinérgicos
17.
Clinics (Sao Paulo) ; 78: 100263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37557005

RESUMO

Heart Failure (HF) has been one of the leading causes of death worldwide. Though its latent mechanism and therapeutic manipulation are updated and developed ceaselessly, there remain great gaps in the cognition of heart failure. High morbidity and readmission rates among HF patients are waiting to be addressed. Recent studies have found that myocardial energy metabolism was closely related to heart failure, in which substrate utilization, as well as intermediate metabolism disorders, insulin resistance, oxidative stress, and mitochondrial dysfunction, might underlie systolic dysfunction and progression of HF. This article centers on the changes and counteraction of cardiac energy metabolism in the failing heart. Therefore, targeting impaired energy provision is of great potential in the treatment of HF. And shifting the objective from traditional neurohormones to improving the cellular environment is expected to further optimize the management of HF.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/terapia , Miocárdio/metabolismo , Coração , Metabolismo Energético , Estresse Oxidativo
18.
EMBO J ; 42(18): e111620, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37545364

RESUMO

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Biomedicines ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509679

RESUMO

Glioblastoma (GBM) is the most lethal central nervous system (CNS) tumor, mainly due to its high heterogeneity, invasiveness, and proliferation rate. These tumors remain a therapeutic challenge, and there are still some gaps in the GBM biology literature. Despite the significant amount of knowledge produced by research on cancer metabolism, its implementation in cancer treatment has been limited. In this study, we explored transcriptomics data from the TCGA database to provide new insights for future definition of metabolism-related patterns useful for clinical applications. Moreover, we investigated the impact of key metabolites (glucose, lactate, glutamine, and glutamate) in the gene expression and metabolic profile of two GBM cell lines, U251 and U-87MG, together with the impact of these organic compounds on malignancy cell features. GBM cell lines were able to adapt to the exposure to each tested organic compound. Both cell lines fulfilled glycolysis in the presence of glucose and were able to produce and consume lactate. Glutamine dependency was also highlighted, and glutamine and glutamate availability favored biosynthesis observed by the increase in the expression of genes involved in fatty acid (FA) synthesis. These findings are relevant and point out metabolic pathways to be targeted in GBM and also reinforce that patients' metabolic profiling can be useful in terms of personalized medicine.

20.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175422

RESUMO

Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.


Assuntos
COVID-19 , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Miocardite , Humanos , Miocardite/patologia , Cardiomiopatia Dilatada/patologia , SARS-CoV-2 , Insuficiência Cardíaca/etiologia , Imunidade , Enterovirus Humano B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA