Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.748
Filtrar
1.
3 Biotech ; 14(6): 171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828099

RESUMO

Diosgenin (DG), a well-known steroidal sapogenin, is abundantly found in the plants of the Dioscoreaceae family and exhibits diverse pharmacological properties. In our previous study, we demonstrated that DG supplementation protected Caenorhabditis elegans from high glucose-induced lipid deposition, oxidative damage, and lifespan reduction. Nevertheless, the precise biological mechanisms underlying the beneficial effects of DG have not yet been described. In this context, the present study aims to elucidate how DG reduces molecular and cellular declines induced by high glucose, using the powerful genetics of the C. elegans model. Treatment with DG significantly (p < 0.01) prevented fat accumulation and extended lifespan under high-glucose conditions without affecting physiological functions. DG-induced lifespan extension was found to rely on longevity genes daf-2, daf-16, skn-1, glp-1, eat-2, let-363, and pha-4. Specifically, DG regulates lipophagy, the autophagy-mediated degradation of lipid droplets, in C. elegans, thereby inhibiting fat accumulation. Furthermore, DG treatment did not alter the triglyceride levels in the fat-6 and fat-7 single mutants and fat-6;fat-7 double mutants, indicating the significant role of stearoyl-CoA desaturase genes in mediating the reduction of fat deposition by DG. Our results provide new insight into the fat-reducing mechanisms of DG, which might develop into a multitarget drug for preventing obesity and associated health complications; however, preclinical studies are required to investigate the effect of DG on higher models. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04017-3.

2.
Int J Nanomedicine ; 19: 4907-4921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828197

RESUMO

Purpose: Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods: We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results: P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion: P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.


Assuntos
Intoxicação Alcoólica , Exossomos , Fígado , Camundongos Endogâmicos C57BL , Raízes de Plantas , Pueraria , Animais , Pueraria/química , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/química , Camundongos , Masculino , Intoxicação Alcoólica/tratamento farmacológico , Raízes de Plantas/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Etanol/química , Etanol/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alcoolismo/tratamento farmacológico , Isoflavonas
3.
Neuro Oncol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828478

RESUMO

BACKGROUND: Formalin-fixed, paraffin-embedded (FFPE) tissue slides are routinely used in cancer diagnosis, clinical decision-making, and stored in biobanks, but their utilization in Raman spectroscopy-based studies has been limited due to the background coming from embedding media. METHODS: Spontaneous Raman spectroscopy was used for molecular fingerprinting of FFPE tissue from 46 patient samples with known methylation subtypes. Spectra were used to construct tumor/non-tumor, IDH1WT/IDH1mut, and methylation-subtype classifiers. Support vector machine and random forest were used to identify the most discriminatory Raman frequencies. Stimulated Raman spectroscopy was used to validate the frequencies identified. Mass spectrometry of glioma cell lines and TCGA were used to validate the biological findings. RESULTS: Here we develop APOLLO (rAman-based PathOLogy of maLignant glioma) - a computational workflow that predicts different subtypes of glioma from spontaneous Raman spectra of FFPE tissue slides. Our novel APOLLO platform distinguishes tumors from nontumor tissue and identifies novel Raman peaks corresponding to DNA and proteins that are more intense in the tumor. APOLLO differentiates isocitrate dehydrogenase 1 mutant (IDH1mut) from wildtype (IDH1WT) tumors and identifies cholesterol ester levels to be highly abundant in IDHmut glioma. Moreover, APOLLO achieves high discriminative power between finer, clinically relevant glioma methylation subtypes, distinguishing between the CpG island hypermethylated phenotype (G-CIMP)-high and G-CIMP-low molecular phenotypes within the IDH1mut types. CONCLUSIONS: Our results demonstrate the potential of label-free Raman spectroscopy to classify glioma subtypes from FFPE slides and to extract meaningful biological information thus opening the door for future applications on these archived tissues in other cancers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38829261

RESUMO

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.

5.
Pest Manag Sci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829276

RESUMO

BACKGROUND: This study aims to obtain systematic understanding of the way by which pesticides are metabolized in plants and the influence of this process on plants' metabolism as this process has a key impact on plant-based food safety and quality. The research was conducted under field conditions, which enabled to capture metabolic processes taking place in plants grown under multihectare cultivation conditions. RESULTS: Research was conducted on three wheat varieties cultivated under field conditions and treated by commercially available preparations (fungicides, herbicides, insecticides, and growth regulator). Plant tissues with distinctions in roots, green parts, and ears were collected periodically during spring-summer vegetation period, harvested grains were also investigated. Sample extracts were examined by chromatographic techniques coupled with tandem mass spectrometry for: dissipation kinetics study, identification of pesticide metabolites, and fingerprint-based assessment of metabolic changes. CONCLUSION: Tissue type and wheat varieties influenced pesticide dissipation kinetics and resulting metabolites. Metabolic changes of plants were influenced by type of applied pesticide and its concentration in plants tissues. Despite differences in plant metabolic response to pesticide stress during cultivation, grain metabolomes of all investigated wheat varieties were statistically similar. 4-[cyclopropyl(hydroxy)methylidene]-3,5-dioxocyclo-hexanecarboxylic acid and trans-chrysantemic acid - metabolites of crop-applied trinexapac-ethyl and lambda-cyhalothrin, respectively, were identified in cereal grains. These compounds were not considered to be present in cereal grains up to now. The research was conducted under field conditions, enabling the measurement of metabolic processes taking place in plants grown under large-scale management conditions. © 2024 Society of Chemical Industry.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38829385

RESUMO

Garlic exhibits hypolipidemic, hypoglycemic, and cardiovascular benefits. The inconsistent results of garlic preparations on adipogenesis have caused more confusion in the public and academia. The compounds responsible for the anti-adipogenesis effect of garlic remain unknown. The present study aimed to verify the real anti-adipogenesis and anti-obesity component in garlic and explored its possible effects in metabolic syndrome. We verified the real anti-adipogenesis and anti-obesity components of garlic in 3T3-L1 preadipocytes and a 10-week-high fat diet (HFD)-induced obese mice. In vitro, two water-soluble and four typical lipid-soluble compounds of garlic were tested for their anti-adipogenesis. Then, the water-soluble compound, alliin, and two processing methods produced garlic oils, were evaluated in vivo study. Mice received oral administration of alliin (25 mg/kg) and garlic oils (15 mg/kg) daily for 8 weeks. Serum lipids, parameters of obesity, and indicators involved in regulating glycolipid metabolism were examined. Our findings confirmed that both water-soluble and lipid-soluble organosulfur compounds of garlic contributed to garlic's anti-adipogenesis effect, in which water-soluble sulfides, especially alliin, exhibited greater potency. Alliin possessed potent effects of anti-obesity and improvement in glucose and lipid metabolism in HFD-induced obese mice. Alliin mediated these effects partly attributed to its modulation of enzymatic activities within glycolipid metabolism and activating PPARγ signaling pathway. In contrast to odorous lipid-soluble sulfides, alliin is odorless, stable, and safe, and is an ideal nutraceutical or even medicinal candidates for the treatment of metabolic diseases. Alliin could be used to standardize the quality of garlic products.

7.
J Physiol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822814

RESUMO

The present study examined and compared the impact of exercise training on redox and molecular properties of human microvascular endothelial cells derived from skeletal muscle biopsies from sedentary recent (RPF, ≤ 5 years as postmenopausal) and late (LPF, ≥ 10 years as postmenopausal) postmenopausal females. Resting skeletal muscle biopsies were obtained before and after 8 weeks of intense aerobic exercise training for isolation of microvascular endothelial cells and determination of skeletal muscle angiogenic proteins and capillarisation. The microvascular endothelial cells were analysed for mitochondrial respiration and production of reactive oxygen species (ROS), glycolysis and proteins related to vascular function, redox balance and oestrogen receptors. Exercise training led to a reduced endothelial cell ROS formation (∼50%; P = 0.009 and P = 0.020 for intact and permeabilized cells (state 3), respectively) in RPF only, with no effect on endothelial mitochondrial capacity in either group. Basal endothelial cell lactate formation was higher (7%; P = 0.028), indicating increased glycolysis, after compared to before the exercise training period in RPF only. Baseline endothelial G protein-coupled oestrogen receptor (P = 0.028) and muscle capillarisation (P = 0.028) was lower in LPF than in RPF. Muscle vascular endothelial growth factor protein was higher (32%; P = 0.002) following exercise training in LPF only. Exercise training did not influence endothelial cell proliferation or skeletal muscle capillarisation in either group, but the CD31 level in the muscle tissue, indicating endothelial cell content, was higher (>50%; P < 0.05) in both groups. In conclusion, 8 weeks of intense aerobic exercise training reduces ROS formation and enhances glycolysis in microvascular endothelial cells from RPF but does not induce skeletal muscle angiogenesis. KEY POINTS: Late postmenopausal females have been reported to achieve limited vascular adaptations to exercise training. There is a paucity of data on the effect of exercise training on isolated skeletal muscle microvascular endothelial cells (MMECs). In this study the formation of reactive oxygen species in MMECs was reduced and glycolysis increased after 8 weeks of aerobic exercise training in recent but not late postmenopausal females. Late postmenopausal females had lower levels of G protein-coupled oestrogen receptor in MMECs and lower skeletal muscle capillary density at baseline. Eight weeks of intense exercise training altered MMEC properties but did not induce skeletal muscle angiogenesis in postmenopausal females.

8.
ACS Biomater Sci Eng ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822812

RESUMO

In the evolving field of drug discovery and development, multiorgans-on-a-chip and microphysiological systems are gaining popularity owing to their ability to emulate in vivo biological environments. Among the various gut-liver-on-a-chip systems for studying oral drug absorption, the chip developed in this study stands out with two distinct features: incorporation of perfluoropolyether (PFPE) to effectively mitigate drug sorption and a unique enterohepatic single-passage system, which simplifies the analysis of first-pass metabolism and oral bioavailability. By introducing a bolus drug injection into the liver compartment, hepatic extraction alone could be evaluated, further enhancing our estimation of intestinal availability. In a study on midazolam (MDZ), PFPE-based chips showed more than 20-times the appearance of intact MDZ in the liver compartment effluent compared to PDMS-based counterparts. Notably, saturation of hepatic metabolism at higher concentrations was confirmed by observations when the dose was reduced from 200 µM to 10 µM. This result was further emphasized when the metabolism was significantly inhibited by the coadministration of ketoconazole. Our chip, which is designed to minimize the dead volume between the gut and liver compartments, is adept at sensitively observing the saturation of metabolism and the effect of inhibitors. Using genome-edited CYP3A4/UGT1A1-expressing Caco-2 cells, the estimates for intestinal and hepatic availabilities were 0.96 and 0.82, respectively; these values are higher than the known human in vivo values. Although the metabolic activity in each compartment can be further improved, this gut-liver-on-a-chip can not only be used to evaluate oral bioavailability but also to carry out individual assessment of both intestinal and hepatic availability.

9.
Carbohydr Res ; 541: 109172, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823062

RESUMO

Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.

10.
Food Chem ; 455: 139899, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38823138

RESUMO

In this study, gum arabic (GA) coating was employed to mitigate chilling injury in peach fruit, and it was observed that 10% GA coating exhibited the most favorable effect. GA coating significantly inhibited the decline of AsA content and enhanced antioxidant enzyme activity in peach fruit, thereby enhancing reactive oxygen species (ROS) scavenging rate while reducing its accumulation. Simultaneously, GA coating inhibited the activity of oxidative degradation enzymes for phenolics and enhanced synthase activity, thus maintaining higher levels of total phenolics and flavonoids in fruits. Additionally, compared to the control fruit, GA-coated fruits demonstrated higher concentrations of sucrose and sorbitol, accompanied more robust activity of sucrose synthase and sucrose phosphate synthase, as well as reduced activity of acid invertase and neutral invertase. Our study demonstrates that GA coating can effectively enhance the cold resistance of peach fruit by regulating ROS, phenolics, and sugar metabolism, maintaining high levels of phenolics and sucrose while enhancing antioxidant activity.

11.
Food Chem ; 455: 139856, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38823144

RESUMO

The global prevalence of obesity more than doubled between 1990 and 2022. By 2022, 2.5 billion adults aged 18 and older were overweight, with over 890 million of them living with obesity. The urgent need for understanding the impact of high-fat diet, together with the demanding of analytical methods with low energy/chemicals consumption, can be fulfilled by rapid, high-throughput spectroscopic techniques. To understand the impact of high-fat diet on the metabolic signatures of mouse cecal contents, we characterized metabolite variations in two diet-groups (standard vs high-fat diet) using FTIR spectroscopy and multivariate analysis. Their cecal content showed distinct spectral features corresponding to high- and low-molecular-weight metabolites. Further quantification of 13 low-molecular-weight metabolites using liquid chromatography showed significant reduction in the production of short chain fatty acids and amino acids associated with high-fat diet samples. These findings demonstrated the potential of spectroscopy to follow changes in gut metabolites.

12.
Redox Biol ; 73: 103203, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38823208

RESUMO

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.

13.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823389

RESUMO

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.

14.
Biochim Biophys Acta Mol Basis Dis ; : 167271, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823462

RESUMO

The dysbiosis of gut microbiota with aging has been extensively studied, revealing its substantial contribution to variety of diseases. However, the impact of aged microbiota in heart failure (HF) remains unclear. In this study, we employed the method of fecal microbiota transplantation (FMT) from aged donors to investigate its role in the context of HF. Our results demonstrate that FMT from aged donors alters the recipient's gut microbiota composition and abundance. Furthermore, FMT impairs cardiac function and physical activity in HF mice. Aged FMT induces metabolic alterations, leading to body weight gain, impaired glucose tolerance, increased respiratory exchange ratio (RER), and enhanced fat accumulation. The epicardium of aged FMT recipients shows fat accumulation, accompanied by cardiomyocyte hypertrophy, cardiac fibrosis and increased cellular apoptosis. Mechanistically, aged FMT suppresses the PPARα/PGC1α signaling pathway in HF. Notably, activation of PPARα effectively rescues the metabolic changes and myocardial injury caused by aged FMT. In conclusion, our study emphasizes the role of the PPARα/PGC1α signaling pathway in aged FMT-mediated HF.

15.
Life Sci ; : 122760, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823506

RESUMO

Photobiomodulation (PBM) represents a promising and powerful approach for non-invasive therapeutic interventions. This emerging field of research has gained a considerable attention due to its potential for multiple disciplines, including medicine, neuroscience, and sports medicine. While PBM has shown the ability to stimulate various cellular processes in numerous medical applications, the fine-tuning of treatment parameters, such as wavelength, irradiance, treatment duration, and illumination geometry, remains an ongoing challenge. Furthermore, additional research is necessary to unveil the specific mechanisms of action and establish standardized protocols for diverse clinical applications. Given the widely accepted understanding that mitochondria play a pivotal role in the PBM mechanisms, our study delves into a multitude of PBM illumination parameters while assessing the PBM's effects on the basis of endpoints reflecting the mitochondrial metabolism of human cardiac myocytes (HCM), that are known for their high mitochondrial density. These endpoints include: i) the endogenous production of protoporphyrin IX (PpIX), ii) changes in mitochondrial potential monitored by Rhodamine 123 (Rhod 123), iii) changes in the HCM's oxygen consumption, iv) the fluorescence lifetime of Rhod 123 in mitochondria, and v) alterations of the mitochondrial morphology. The good correlation observed between these different methods to assess PBM effects underscores that monitoring the endogenous PpIX production offers interesting indirect insights into the mitochondrial metabolic activity. This conclusion is important since many approved therapeutics and cancer detection approaches are based on the use of PpIX. Finally, this correlation strongly suggests that the PBM effects mentioned above have a common "fundamental" mechanistic origin.

16.
J Biol Chem ; : 107426, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823637

RESUMO

Skeletal muscle is heterogeneous tissue, composed of fast-twitch fibers primarily relying on glycolysis and slow-twitch fibers primarily relying on oxidative phosphorylation (OXPHOS). The relative expression and balance of glycolysis and oxidative phosphorylation in skeletal muscle are crucial for muscle growth and skeletal muscle metabolism. Here, we employed multi-omics approaches including transcriptomics, proteomics, phosphoproteomics, and metabolomics to unravel the role of circMYLK4, a differentially expressed circRNA in fast and slow-twitch muscle fibers, in muscle fiber metabolism. We discovered that circMYLK4 inhibits glycolysis and promotes mitochondrial oxidative phosphorylation. Mechanistically, circMYLK4 interacts with the voltage-gated calcium channel auxiliary subunit CACNA2D2, leading to the inhibition of Ca2+ release from the sarcoplasmic reticulum. The decrease in cytoplasmic Ca2+ concentration inhibits the expression of key enzymes, PHKB and PHKG1, involved in glycogen breakdown, thereby suppressing glycolysis. On the other hand, the increased fatty acid ß-oxidation enhances the tricarboxylic acid (TCA) cycle and mitochondrial oxidative phosphorylation. In general, circMYLK4 plays an indispensable role in maintaining the metabolic homeostasis of skeletal muscle.

17.
Cancer Lett ; : 217006, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823763

RESUMO

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. Conclusion: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.

18.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824544

RESUMO

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Assuntos
Aminoácidos , Proliferação de Células , Fluoretos , Músculo Liso Vascular , Ratos Sprague-Dawley , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Fluoretos/farmacologia , Linhagem Celular , Aminoácidos/metabolismo , Proliferação de Células/efeitos dos fármacos , Ratos , Movimento Celular/efeitos dos fármacos , Masculino , Aorta/patologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Metabolômica , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Redes Reguladoras de Genes/efeitos dos fármacos
19.
Cell Biosci ; 14(1): 69, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824560

RESUMO

Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.

20.
Future Sci OA ; 10(1): FSO904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827791

RESUMO

Aim: Alzheimer's disease causes dementia which impairs the cognitive domains. Methodology: The pharmacokinetic characteristics and biological activity of echinocystic acid are predicted in this work using in silico or computational approaches, including pkCSM, Swiss ADME, OSIRIS® property explorer, PASS online web resource and MOLINSPIRATION® software. Results & discussion: The compound has lipid metabolism regulating property as major role in decreasing the progression of Alzheimer's disease and it has no major side effects and ADR. The drug also has anti-inflammatory properties which can help in regulating the innate immunity that plays a major role in Alzheimer's disease. Conclusion: From the computational screening, we infer that, echinocystic acid can regulate memory loss, cognitive disability and also slow down the progression of Alzheimer's disease-like pathology.


Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by ß-amyloid (Aß) plaque deposition and neurofibrillary tangles of hyperphosphorylated tau. There is no treatment to completely cure AD and dementia but the progression of the disease can be slowed down and the major symptoms can be treated. Various online servers and web resources were employed in this study. The use of online and offline tools for the prediction and evaluation of the various drug properties and parameters have led to evidential conclusion of the study. The calculated binding affinities for all of the designed compounds range from -1.5 to -6.0 kcal/mol-1, while few receptors showed positive binding affinity indicating less binding with receptor. From the in silico study performed we infer that echinocystic acid can regulate memory loss, cognitive disability and slow down the progression of Alzheimer's disease like pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...