Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799394

RESUMO

The metacommunity theory enhances our understanding of how ecological processes regulate community structure. Yet, unraveling the complexities of soil nematode metacommunity structures across various spatial scales and determining the factors influencing these patterns remains challenging. Therefore, we conducted an investigation on soil nematode metacommunities spanning from north to south in the Northeastern China. Our aim was to test whether nematode metacommunities were structured by different drivers under three land covers (i.e., farmland, grassland and woodland) at the local and regional scales. The results revealed that the Clementsian, Gleasonian and their quasi-structures of soil nematodes collectively accounted for 93% of the variation across the three land covers at the local and regional scales. These structures suggest that the soil nematode metacommunities in the Northeast China responded to fluctuations in environmental gradients. At the local scale, metacommunities were primarily shaped by biological interactions. At the regional scale, environmental heterogeneity, dispersal limitation and biological interactions all contributed to nematode metacommunities. Meanwhile, biological interactions under three land covers were represented within different trophic groups, with plant parasites predominant in farmlands and bacterivores in grasslands and woodlands. In conclusion, the metacommunity structures of soil nematodes remain stable at different spatial scales and land covers. Biological interactions are widespread among nematodes regardless of changes in spatial scales and land covers. This study reveals the importance of nematode sensitivity to the environment and biological interactions in shaping the nematode metacommunities, potentially enhancing our understanding of the spatial patterns of nematode metacommunities.

2.
Ecol Evol ; 13(11): e10686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020703

RESUMO

Metacommunity theory has advanced scientific understanding of how species interactions and spatial processes influence patterns of biodiversity and community structure across landscapes. While the central tenets of metacommunity theory have been promoted as pivotal considerations for conservation management, few field experiments have tested the validity of metacommunity predictions. Here, we tested one key prediction of metacommunity theory-that decreasing habitat connectivity should erode metacommunity structure by hindering species movement between patches. For 2 years, we manipulated an experimental old-field grassland ecosystem via mowing to represent four levels of habitat connectivity: (1) open control, (2) full connectivity, (3) partial connectivity, and (4) no connectivity. Within each treatment plot (10 × 10 m, n = 4 replicates), we measured the abundance and diversity (i.e., alpha and beta) of both flying and ground arthropods using sticky and pitfall traps, respectively. We found that the abundance and diversity of highly mobile flying arthropods were unaffected by habitat connectivity, whereas less mobile ground arthropods were highly impacted. The mean total abundance of ground arthropods was 2.5× and 2× higher in the control and partially connected plots compared to isolated patches, respectively. We also reveal that habitat connectivity affected the trophic interactions of ground arthropods, with predators (e.g., wolf spiders, ground spiders) being highly positively correlated with micro-detritivores (springtails, mites) but not macro-detritivores (millipedes, isopods) as habitat connectivity increased. Together these findings indicate that changes in habitat connectivity can alter the metacommunity structure for less mobile organisms such as ground arthropods. Because of their essential roles in terrestrial ecosystem functioning and services, we recommend that conservationists, restoration practitioners, and land managers include principles of habitat connectivity for ground arthropods when designing biodiversity management programs.

3.
Ecol Evol ; 13(6): e10191, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325721

RESUMO

Revealing community patterns and driving forces is essential in community ecology and a prerequisite for effective management and conservation efforts. However, the mangrove ecosystem and its important fauna group such as the crabs, still lack multi-processes research under metacommunity framework, resulting in evidence and theorical application gaps. To fill these gaps, we selected China's most representative mangrove bay reserve in tropical zone as a stable experimental system and conducted a seasonal investigation (July 2020, October 2020, January 2021, and April 2021) of mangrove crabs. We performed a multi-approach analysis using both pattern-based and mechanistic method to distinguish the processes driving the mangrove crab metacommunity. Our results showed that the crab metacommunity exhibits a Clementsian pattern in the bay-wide mangrove ecosystem but is influenced by both local environmental heterogeneity and spatial processes, thus representing a combined paradigm of species sorting and mass effect. Moreover, the long-distance spatial constraints are more pronounced compared to the local environmental factors. This is reflected in the greater importance of the broad-scale Moran's Eigenvector Maps, the distance-decay pattern of similarity, and the difference in beta diversity dominated by the turnover component. This pattern changes throughout the year, mainly due to changes in dominant functional groups caused by the stress of changes in water salinity and temperature induced by air temperature and precipitation. This research provides multi-dimension research data and relevant analysis, offering clear evidence for understanding the patterns and related driving forces of crab metacommunity in tropical bay mangroves, and verifies the applicability of some general laws in the system. Future studies can address more diverse spatiotemporal scales, gaining a clearer understanding to serve the conservation of mangrove ecosystems and economically important fishery species.

4.
FEMS Microbiol Ecol ; 98(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36202390

RESUMO

Our knowledge of aquatic fungal communities, their assembly, distributions and ecological roles in marine ecosystems is scarce. Hence, we aimed to investigate fungal metacommunities of coastal habitats in a subarctic zone (northern Baltic Sea, Sweden). Using a novel joint species distribution model and network approach, we quantified the importance of biotic associations contributing to the assembly of mycoplankton, further, detected potential biotic interactions between fungi-algae pairs, respectively. Our long-read metabarcoding approach identified 493 fungal taxa, of which a dominant fraction (44.4%) was assigned as early-diverging fungi (i.e. Cryptomycota and Chytridiomycota). Alpha diversity of mycoplankton declined and community compositions changed along inlet-bay-offshore transects. The distributions of most fungi were rather influenced by environmental factors than by spatial drivers, and the influence of biotic associations was pronounced when environmental filtering was weak. We found great number of co-occurrences (120) among the dominant fungal groups, and the 25 associations between fungal and algal OTUs suggested potential host-parasite and/or saprotroph links, supporting a Cryptomycota-based mycoloop pathway. We emphasize that the contribution of biotic associations to mycoplankton assembly are important to consider in future studies as it helps to improve predictions of species distributions in aquatic ecosystems.


Assuntos
Ecossistema , Micobioma , Biodiversidade , Interações Hospedeiro-Parasita , Fungos/genética , Plantas/microbiologia
5.
Int J Parasitol Parasites Wildl ; 18: 82-91, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35519506

RESUMO

Phylogenetically or taxonomically related hosts may harbour similar parasite communities due to phylogenetic conservatism. In addition, host attributes may favour their exposure to parasites. This study aimed to characterize the helminth fauna of sigmodontine rodents in an Atlantic Forest area in northeastern Brazil and determine the pattern of the helminth metacommunity structure. The influence of host attributes and host taxonomy on the metacommunity structure was also investigated. The most abundant helminth species were Raillietina sp. and Hassalstrongylus lauroi. Euryoryzomys russatus was the most infected host species for helminth parasites, as approximately 81% (35/43) of the animals were infected by at least one helminth species. The helminth metacommunity structure was coherent at both the infracommunity and the component community scales, indicating that species responded to the same environmental gradient. A quasi-Clementsian pattern was observed for the infracommunities, indicating the occurrence of compartments of parasite species that were substituted along the environmental gradient, which was formed by host individuals. A quasi-Gleasonian pattern was found at the component community scale, showing random boundary clumping, which is consistent with the individualistic responses of parasite species to each host species. These patterns corroborated the high values of beta-diversity observed, indicating high species turnover among communities at both scales. Host taxonomic distance was the most important variable explaining the patterns of the helminth metacommunity structure.

6.
Sci Total Environ ; 807(Pt 2): 150891, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637877

RESUMO

Although metacommunity dynamics of lentic phytoplankton are relatively well-documented, studies on the role of environmental and spatial processes in shaping phytoplankton communities of large rivers are still scarce. Here, we examined six phytoplankton data sets, which were collected in 1978-2017 from large river-scale segments (mean spatial extent 1117 km) in the Danube River. Our aim was to elucidate role of climatic, spatial and temporal predictors in variation of phytoplankton beta diversity using variance partitioning for compositions of species and functional groups sensu Reynolds. We hypothesised that phytoplankton beta diversity (measured as average distance to group centroid) would be positively related to both climatic heterogeneity and spatial extent used as a proxy for dispersal limitation. Additionally, we tested alternative dispersal models to evaluate different spatial processes structuring phytoplankton community. Our results revealed that spatial variables were more important than climatic factors in controlling both species and functional group composition. Climatic heterogeneity showed significant positive relationship with beta diversity. In contrast, there was no significant relationship between beta diversity and spatial extent, suggesting that spatial effect on beta-diversity was attenuated by anthropogenic disturbance. The better performance of non-directional model compared to model of water directionality suggested that spatial dynamics of phytoplankton metacommunity was in large part regulated by differences in the regional species pools. Spatial and temporal variables outperformed environmental (including climatic) factors in explaining phytoplankton metacommunity structure, indicating that phytoplankton exhibited strong biogeographical patterns. Thus, dispersal limitation interfered with species-sorting processes in determining phytoplankton community structure. In conclusion, our findings revealed that the development of a more reliable bioassessment program of the Danube River should be based on separation into basin regions.


Assuntos
Fitoplâncton , Rios , Efeitos Antropogênicos
7.
J Anim Ecol ; 89(7): 1678-1689, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32221972

RESUMO

A fundamental goal of community ecology is to understand the drivers of community assembly and diversity. Local factors acting on community assembly are typically related to environmental conditions while regional factors are typically related to dispersal. Previous research has not consistently demonstrated the importance of local or regional factors, but this is likely because these factors act in concert and not in isolation. Studies that simultaneously integrate local and regional factors into analyses of community assembly can be a useful avenue to further our understanding of this core concept in community ecology. Here, we aimed to identify metacommunity structure and diversity and the local and regional drivers of community assembly at the continental scale. We evaluated metacommunity structure and drivers of assembly of macroinvertebrate communities in 941 rivers and streams nested within nine ecoregions distributed across the conterminous United States. Pattern-based metacommunity analyses and boosted regression tree techniques were used to (a) assign metacommunity structures and (b) identify the environmental, landscape and network drivers of assembly. We also evaluated how biodiversity scaled across hierarchical levels and varied among ecoregions. Metacommunity structures were consistent for the conterminous United States and each of the nine ecoregion subsets, with each ecoregional metacommunity displaying a Clementsian structure. Environmental variables were the predominant drivers of assembly, suggesting the importance of species sorting and environmental filtering on community structure; however, the identity of the most influential environmental variables differed among ecoregions and suggested hierarchical filtering on assembly. Partitioned diversity was found to be lower at the local and ecoregional levels, but turnover in diversity among ecoregions was higher than expected. Our results demonstrate contingencies in community assembly, notwithstanding consistency in metacommunity structure and support the importance of environmental control over community assembly and biodiversity. Moreover, biodiversity at the continental scale is likely maintained through this inherent variation in the drivers of assembly and concomitant changes in community composition among ecoregions. We suggest that further work should evaluate the assembly of other facets of community structure and the underlying mechanisms of the contingency in assembly drivers.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Osso e Ossos , Ecologia
8.
J Anim Ecol ; 89(3): 795-807, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31750933

RESUMO

Natural river floodplains are among the Earth's most biologically diverse and productive ecosystems but face a range of critical threats due to human disturbance. Understanding the ecological processes that support biodiversity and productivity in floodplain rivers is essential for their future protection and rehabilitation. Fish assemblage structure on tropical river floodplains is widely considered to be driven by dispersal limitation during the wet season and by environmental filtering and interspecific interactions during the dry season. However, the individual-level movement behaviours (e.g. site attachment, nomadism, homing) that regulate dispersal of fish on floodplains are poorly understood. We combined radiotelemetry and remote sensing to examine the movement behaviour of two large-bodied fishes (barramundi Lates calcarifer, forktail catfish Neoarius leptaspis) over the flood cycle in a tropical river-floodplain system in northern Australia to: (a) quantify movement responses in relation to dynamic habitat resources at a landscape scale; and (b) determine the extent of spatial 'reshuffling' of individual fish following the wet season. Both species altered their behaviour rapidly in response to changes in the availability and distribution of aquatic habitat, with most individuals undertaking extensive movements (up to ~27 km from the tagging location) on the inundated floodplain during the wet season. Although there was considerable individual variation in movement patterns, overall barramundi distributions closely tracked the extent of floodplain primary productivity, whereas catfish distributions were most closely associated with the extent of flooded area. Most individuals of both species exhibited homing back to previously occupied dry season refugia during the wet-to-dry transition, even though other potential refugia were available in closer proximity to wet season activity areas. We postulate that homing behaviour modulates temporal variation in fish assemblage composition and abundance and limits the transfer of aquatic-derived energy and nutrients into terrestrial food webs by reducing fish mortality on drying floodplains. Our study demonstrates the importance of quantifying individual-level behaviour across the three stages of dispersal (emigration, inter-patch movement, immigration) for our understanding of how animal movement influences energetic subsidies and other large-scale ecosystem processes.


Assuntos
Ecossistema , Rios , Animais , Austrália , Peixes , Cadeia Alimentar , Humanos
9.
Oecologia ; 190(2): 323-331, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31123805

RESUMO

Checkerboards have emerged as a metaphor to (1) describe mutually exclusive patterns of co-occurrence for ecologically similar species that are geographically interspersed (i.e., checkerboard distributions), and (2) characterize relationships among species distributions along gradients that involve entire metacommunities (i.e., checkerboard metacommunity structure). Critical differences exist in the conceptual foundations that characterize these patterns. Checkerboard distributions are characterized by mutual exclusion of geographically interspersed species, usually pairs of ecologically similar species for which competition prevents syntopy. In contrast, checkerboard metacommunity structures are more restrictive: groups of species must exhibit mutually exclusive distributions, and each of these groups must be spatially independent of all other groups. Consequently, in a checkerboard metacommunity, competition defines one relationship for each species (i.e., that with its mutually exclusive partner), whereas independence characterizes all other interspecific associations. Consequently, a structure designed to be consistent with this concept will conclude that the metacommunity has random rather than checkerboard structure. Indeed, empirical checkerboard metacommunities are quite rare (7 of 766 reported empirical structures), and likely arise because of poor characterization of species ranges due to detection errors (i.e., a preponderance of rare or hard-to-detect species), rather than from underlying ecological mechanisms. Importantly, no ecological mechanism has been identified that is consistent with the concept of negative coherence. Consequently, the evaluation of checkerboards should be restricted to small sets of ecologically similar species for which interspecific interactions may lead to mutual exclusion, and coherence should be used only to evaluate if species distributions are more coherent than expected by chance (i.e., one-tailed tests).


Assuntos
Ecologia , Ecossistema
10.
J Parasitol ; 105(2): 271-282, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30945988

RESUMO

The ecology of host-parasite interactions can be studied in the infracommunity and component community scales, which may show different patterns in species distributions, interacting and affecting each other on a regional scale. Few studies have been carried out concerning the structure and variation of the helminth communities of wild rodents in Brazil. The rodent Necromys lasiurus is typical from the mammalian fauna of the Cerrado biome; however, the environmental disturbances are making this species occur in rural areas and in other biomes where it may act as host/reservoir of many diseases. This study aimed to describe the composition and structure of the helminth metacommunity in the rodent N. lasiurus in the Brazilian Cerrado, Uberlândia, State of Minas Gerais, using the analysis of metacommunity structure. Rodents were sampled in 3 habitat types: borders of soybean and corn plantations, pasturelands, and preserved areas of Cerrado borders. Adult helminths of 8 species were found in the gastrointestinal tract: Protospirura numidica criceticola, Physaloptera sp., Pterygodermatites ( Paucipectines) zygodontomis (Spirurida), Stilestrongylus freitasi (Rhabditida), Trichuris navonae (Trichurida) and Syphacia ( Syphacia) alata (Oxiurida) of the Phylum Nematoda; Rodentolepis akodontis (Cyclophyllidea) of the Phylum Platyhelminthes; and Moniliformis sp. (Moniliformida) of the Phylum Acanthocephala. Season and the kind of land use favored some helminths species in this rodent, especially in the plantation area, although diversity was not largely influenced by the land use. Plantation areas could provide an increase in the host abundance and the occurrence of other rodent species, favoring a higher rate of parasite exchange among different hosts. A checkerboard structure of metacommunity was found on the infracommunity scale, which suggests the existence of interspecific competition. A quasi-nested structure of metacommunity was observed on the component community scale showing that most species were influenced by the same environmental gradient and that the species-poor communities were subsets of species-rich communities. Syphacia alata, P. zygodontomis, S. freitasi, and R. akodontis were dominant species in all habitats and represented the core-species in the metacommunity.


Assuntos
Helmintíase Animal/parasitologia , Doenças dos Roedores/parasitologia , Sigmodontinae/parasitologia , Animais , Brasil/epidemiologia , Ecossistema , Feminino , Helmintíase Animal/epidemiologia , Interações Hospedeiro-Parasita , Modelos Lineares , Masculino , Prevalência , Doenças dos Roedores/epidemiologia , Estações do Ano
11.
Rev. bras. parasitol. vet ; 27(4): 495-504, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-977933

RESUMO

Abstract The helminth fauna and metacommunity structure of eight sympatric sigmodontine rodents were investigated at the Serra dos Órgãos National Park, an Atlantic Forest reserve located in the State of Rio de Janeiro, southeast Brazil. Rodents of the species Abrawayaomys ruschii, Akodon montensis, Blarinomys breviceps , Delomys dorsalis, Oligoryzomys flavescens, Oligoryzomys nigripes, Oxymycterus quaestor and Thaptomys nigrita were found infected with helminths. Akodon montensis presented the highest total helminth species richness, with six different species of helminths. The nematode Stilestrongylus lanfrediae was the most abundant and prevalent helminth species observed. The host-parasite network analysis showed little interactions among host species. Akodon montensis seems to act as a keystone-species in the rodent community. This species shared the nematodes Stilestrongylus aculeata with A. ruschii and Protospirura numidica criceticola with T. nigrita, and the cestode Rodentolepis akodontis with D. dorsalis. The congeners host species O. flavescens and O. nigripes shared the nematodes Guerrerostrongylus zetta and S. lanfrediae. The rodents B. breviceps and O. quaestor did not share any helminths with other hosts. The helminth metacommunity showed a random pattern on both infracommunity and component community levels, indicating different responses by each helminth species to the environmental gradient.


Resumo Foram investigadas a helmintofauna e suas estruturas da metacomunidade em oito roedores sigmodontíneos simpátricos ao longo do Parque Nacional da Serra dos Órgãos, uma reserva de Mata Atlântica no estado do Rio de Janeiro, Brasil. Roedores das espécies Abrawayaomys ruschii, Akodon montensis, Blarinomys breviceps, Delomys dorsalis, Oligoryzomys flavescens, Oligoryzomys nigripes, Oxymycterus quaestor e Thaptomys nigrita foram infectados por helmintos. Akodon montensis apresentou a maior riqueza total de espécies de helmintos, com seis espécies. O nematoide Stilestrongylus lanfrediae foi a espécie de helminto com maior abundância e prevalência. A análise de rede parasito-hospedeiro mostrou poucas interações entre as espécies hospedeiras e A. montensis atuou como uma espécie-chave na comunidade de roedores. Esta espécie compartilhou os nematoides Stilestrongylus aculeata com A. ruschii e Protospirura numidica criceticola com T. nigrita, e o cestoide Rodentolepis akodontis com D. dorsalis. As espécies congêneres O. flavescens e O. nigripes compartilharam os nematoides Guerrerostrongylus zetta e S. lanfrediae. Os roedores B. breviceps e O. quaestor não compartilharam helmintos com outros hospedeiros. A metacomunidade de helmintos mostrou um padrão aleatório em ambos os níveis, comunidade componente e infracomunidade, indicando diferentes respostas de cada espécie de helminto ao gradiente ambiental.


Assuntos
Animais , Doenças dos Roedores/parasitologia , Roedores/parasitologia , Helmintíase Animal/parasitologia , Helmintos/classificação , Brasil/epidemiologia , Florestas , Prevalência , Helmintíase Animal/epidemiologia , Helmintos/isolamento & purificação
12.
Ecol Evol ; 8(18): 9426-9438, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377512

RESUMO

Bottom trawling and eutrophication are well known for their impacts on the marine benthic environment in the last decades. Evaluating the effects of these pressures is often restricted to contemporary benthic data, limiting the potential to observe change from an earlier (preimpact) state. In this study, we compared benthic species records from 1884 to 1886 by CGJ Petersen with recent data to investigate how benthic invertebrate species in the eastern Kattegat have changed since preimpact time. The study shows that species turnover between old and recent times was high, ca. 50%, and the species richness in the investigation area was either unchanged or higher in recent times, suggesting no net loss of species. Elements of metacommunity structure analysis of datasets from the 1880s, 1990s, and 2000s revealed a clear change in the depth distribution structure since the 1880s. The system changed from a Quasi-nested/Random pattern unrelated to depth in the 1880s with many species depth ranges over a major part of the studied depth interval, to a Clementsian pattern in recent times strongly positively correlated with depth. Around 30% of the 117 species recorded both in old and in recent times, including most trawling-sensitive species, that is large, semiemergent species, showed a decrease in maximal depth of occurrence from the deeper zone fished today to the shallower unfished zone, with on average 20 m. Concurrently, the species category remaining in the fished zone was dominated by species less sensitive to bottom trawling like infauna polychaetes and small-sized Peracarida crustaceans, most likely with short longevity. The depth interval and magnitude of the changes in depth distribution and the changes in species composition indicate impacts from bottom trawling rather than eutrophication. Furthermore, the high similarity of results from the recent datasets 10 years apart suggests chronic impact keeping the system in an altered state.

13.
PeerJ ; 6: e4898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844999

RESUMO

That biodiversity declines with latitude is well known, but whether a metacommunity process is behind this gradient has received limited attention. We tested the hypothesis that dispersal limitation is progressively replaced by mass effects with increasing latitude, along with a series of related hypotheses. We explored these hypotheses by examining metacommunity structure in stream invertebrate metacommunities spanning the length of New Zealand's two largest islands (∼1,300 km), further disentangling the role of dispersal by deconstructing assemblages into strong and weak dispersers. Given the highly dynamic nature of New Zealand streams, our alternative hypothesis was that these systems are so unpredictable (at different stages of post-flood succession) that metacommunity structure is highly context dependent from region to region. We rejected our primary hypotheses, pinning this lack of fit on the strong unpredictability of New Zealand's dynamic stream ecosystems and fauna that has evolved to cope with these conditions. While local community structure turned over along this latitudinal gradient, metacommunity structure was highly context dependent and dispersal traits did not elucidate patterns. Moreover, the emergent metacommunity types exhibited no trends, nor did the important environmental variables. These results provide a cautionary tale for examining singular metacommunities. The considerable level of unexplained contingency suggests that any inferences drawn from one-off snapshot sampling may be misleading and further points to the need for more studies on temporal dynamics of metacommunity processes.

14.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25143039

RESUMO

A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion because of their link to resource use and dispersal ability. Small-sized individuals at low-trophic levels, and with limited dispersal potential, are expected to form highly linked subgroups, whereas large-size individuals at higher trophic positions, and with good dispersal potential, will foster the spatial coupling of subgroups and the cohesion of the whole metacommunity. By using modularity analysis, we identified six modules of species with similar responses to ecological conditions and high co-occurrence across local communities. Most species either co-occur with species from a single module or are connectors of the whole network. Among the latter are carnivorous species of intermediate body size, which by virtue of their high incidence provide connectivity to otherwise isolated communities playing the role of spatial couplers. Our study also demonstrates that the incorporation of network tools to the analysis of metacommunity ecology can help unveil the mechanisms underlying patterns and processes in metacommunity assembly.


Assuntos
Artrópodes/fisiologia , Tamanho Corporal , Carnivoridade , Ecossistema , Herbivoria , Lagartos/fisiologia , Animais , Chile , Clima Desértico , Modelos Logísticos , Dinâmica Populacional
15.
J Biogeogr ; 40(8): 1560-1571, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790288

RESUMO

AIM: Metacommunity theories attribute different relative degrees of importance to dispersal, environmental filtering, biotic interactions and stochastic processes in community assembly, but the role of spatial scale remains uncertain. Here we used two complementary statistical tools to test: (1) whether or not the patterns of community structure and environmental influences are consistent across resolutions; and (2) whether and how the joint use of two fundamentally different statistical approaches provides a complementary interpretation of results. LOCATION: Grassland plants in the French Alps. METHODS: We used two approaches across five spatial resolutions (ranging from 1 km × 1 km to 30 km × 30 km): variance partitioning, and analysis of metacommunity structure on the site-by-species incidence matrices. Both methods allow the testing of expected patterns resulting from environmental filtering, but variance partitioning allows the role of dispersal and environmental gradients to be studied, while analysis of the site-by-species metacommunity structure informs an understanding of how environmental filtering occurs and whether or not patterns differ from chance expectation. We also used spatial regressions on species richness to identify relevant environmental factors at each scale and to link results from the two approaches. RESULTS: Major environmental drivers of richness included growing degree-days, temperature, moisture and spatial or temporal heterogeneity. Variance partitioning pointed to an increase in the role of dispersal at coarser resolutions, while metacommunity structure analysis pointed to environmental filtering having an important role at all resolutions through a Clementsian assembly process (i.e. groups of species having similar range boundaries and co-occurring in similar environments). MAIN CONCLUSIONS: The combination of methods used here allows a better understanding of the forces structuring ecological communities than either one of them used separately. A key aspect in this complementarity is that variance partitioning can detect effects of dispersal whereas metacommunity structure analysis cannot. Moreover, the latter can distinguish between different forms of environmental filtering (e.g. individualistic versus group species responses to environmental gradients).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA