Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Elife ; 132024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787374

RESUMO

Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and ß-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.


Assuntos
Candida albicans , Candidíase , Animais , Candida albicans/imunologia , Camundongos , Candidíase/imunologia , Candidíase/prevenção & controle , Vacinas Fúngicas/imunologia , Modelos Animais de Doenças , Virulência , Feminino , Citocinas/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
2.
Int J Biol Macromol ; 268(Pt 2): 131609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621555

RESUMO

Diabetes mellitus is characterized by hyperglycemia that makes insulin more prone to glycation and form advanced glycation end products (AGEs). Here, we report the effect of glyoxal (GO) on the formation of AGEs using human insulin as model protein and their structural modifications. The present investigation also reports the anti-AGE potential of Heliotropium bacciferum (Leaf) extracts. The phytochemical analysis of H. bacciferum revealed that free phenolic extract contains higher amount of total phenolic (3901.58 ± 17.06 mg GAE/100 g) and total flavonoid content (30.41 ± 0.32 mg QE/100 g) when compared to bound phenolic extract. Naringin and caffeic acid were identified as the major phenolic ingredients by UPLC-PAD method. Furthermore, bound phenolics extract showed significantly higher DPPH and superoxide radicals scavenging activity (IC50 17.53 ± 0.36 µg/mL and 0.306 ± 0.038 mg/ mL, respectively) (p ≤ 0.05). Besides, the bound phenolics extract also showed significant (p ≤ 0.05) chelating power (IC50 0.063) compared to free phenolic extract. In addition, bound phenolic extract could efficiently trap GO under physiological conditions. Spectroscopic investigation of GO-modified insulin illustrated changes in the tertiary structure of insulin and formation of AGEs. On the other hand, no significant alteration in secondary structure was observed by far UV-CD measurement. Furthermore, H. bacciferum extract inhibited α-glucosidase activity and AGEs formation implicated in diabetes. Molecular docking analysis depicted that GO bind with human insulin in both chains and forms a stable complex with TYR A: 14, LEU A:13, ASN B:3, SER A:12 amino acid residues with binding energy of - 2.53 kcal/mol. However, caffeic acid binds to ASN A:18 and GLU A:17 residues of insulin with lower binding energy of -4.67 kcal/mol, suggesting its higher affinity towards human insulin compared to GO. Our finding showed promising activity of H. bacciferum against AGEs and its complications. The major phenolics like caffeic acid, naringin and their derivatives could be exploited for the drug development for management of AGEs in diabetes.


Assuntos
Produtos Finais de Glicação Avançada , Inibidores de Glicosídeo Hidrolases , Heliotropium , Simulação de Acoplamento Molecular , Extratos Vegetais , alfa-Glucosidases , Produtos Finais de Glicação Avançada/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Humanos , Heliotropium/química , Análise Espectral , Fenóis/química , Fenóis/farmacologia , Insulina/metabolismo , Insulina/química , Flavonoides/farmacologia , Flavonoides/química
3.
Antioxidants (Basel) ; 13(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38397801

RESUMO

Antioxidant peptides are currently a hotspot in food science, pharmaceuticals, and cosmetics. In different fields, the screening, activity evaluation, mechanisms, and applications of antioxidant peptides are the pivotal areas of research. Among these topics, the efficient screening of antioxidant peptides stands at the forefront of cutting-edge research. To this end, efficient screening with novel technologies has significantly accelerated the research process, gradually replacing the traditional approach. After the novel antioxidant peptides are screened and identified, a time-consuming activity evaluation is another indispensable procedure, especially in in vivo models. Cellular and rodent models have been widely used for activity evaluation, whilst non-rodent models provide an efficient solution, even with the potential for high-throughput screening. Meanwhile, further research of molecular mechanisms can elucidate the essence underlying the activity, which is related to several signaling pathways, including Keap1-Nrf2/ARE, mitochondria-dependent apoptosis, TGF-ß/SMAD, AMPK/SIRT1/PGC-1α, PI3K/Akt/mTOR, and NF-κB. Last but not least, antioxidant peptides have broad applications in food manufacture, therapy, and the cosmetics industry, which requires a systematic review. This review introduces novel technologies for the efficient screening of antioxidant peptides, categorized with a new vision. A wide range of activity evaluation assays, encompassing cellular models, as well as rodent and non-rodent models, are provided in a comprehensive manner. In addition, recent advances in molecular mechanisms are analyzed with specific cases. Finally, the applications of antioxidant peptides in food production, therapy, and cosmetics are systematically reviewed.

4.
Compr Rev Food Sci Food Saf ; 23(1): e13277, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284607

RESUMO

In the past decade, food-derived metal-chelating peptides (MCPs) have attracted significant attention from researchers working towards the prevention of metal (viz., iron, zinc, and calcium) deficiency phenomenon by primarily inhibiting the precipitation of metals caused by the gastrointestinal environment and exogenous substances (including phytic and oxalic acids). However, for the improvement of limits of current knowledge foundations and future investigation directions of MCP or their derivatives, several review categories should be improved and emphasized. The species' uniqueness and differences in MCP productions highly contribute to the different values of chelating ability with particular metal ions, whereas comprehensive reviews of chelation characterization determined by various kinds of technique support different horizons for explaining the chelation and offer options for the selection of characterization methods. The reviews of chelation mechanism clearly demonstrate the involvement of potential groups and atoms in chelating metal ions. The discussions of digestive stability and absorption in various kinds of absorption model in vitro and in vivo as well as the theory of involved cellular absorption channels and pathways are systematically reviewed and highlighted compared with previous reports as well. Meanwhile, the chelation mechanism on the molecular docking level, the binding mechanism in amino acid identification level, the utilizations of everted rat gut sac model for absorption, and the involvement of cellular absorption channels and pathway are strongly recommended as novelty in this review. This review makes a novel contribution to the literature by the comprehensive prospects for the research and development of food-derived mineral supplements.


Assuntos
Quelantes , Metais , Ratos , Animais , Simulação de Acoplamento Molecular , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Metais/química , Peptídeos/química , Íons , Digestão
5.
Environ Sci Pollut Res Int ; 31(7): 11192-11213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217816

RESUMO

The problem of heavy metal pollution in water bodies poses a significant threat to both the environment and human health, as these toxic substances can persist in aquatic ecosystems and accumulate in the food chain. This study investigates the promising potential of using Microcystis aeruginosa extracellular polymeric substances (EPS) as an environmentally friendly, highly efficient solution for capturing copper (Cu2+) and nickel (Ni2+) ions in water treatment, emphasizing their exceptional ability to promote green technology in heavy metal sequestration. We quantified saccharides, proteins, and amino acids in M. aeruginosa biomass and isolated EPS, highlighting their metal-chelating capabilities. Saccharide content was 36.5 mg g-1 in biomass and 21.4 mg g-1 in EPS, emphasizing their metal-binding ability. Proteins and amino acids were also prevalent, particularly in EPS. Scanning electron microscopy (SEM) revealed intricate 3D EPS structures, with pronounced porosity and branching configurations enhancing metal sorption. Elemental composition via energy dispersive X-ray analysis (EDAX) identified essential elements in both biomass and EPS. Fourier transform infrared (FTIR) spectroscopy unveiled molecular changes after metal treatment, indicating various binding mechanisms, including oxygen atom coordination, π-electron interactions, and electrostatic forces. Kinetic studies showed EPS expedited and enhanced Cu2+ and Ni2+ sorption compared to biomass. Thermodynamic analysis confirmed exothermic, spontaneous sorption. Equilibrium biosorption studies displayed strong binding and competitive interactions in binary metal systems. Importantly, EPS exhibited impressive maximum sorption capacities of 44.81 mg g-1 for Ni2+ and 37.06 mg g-1 for Cu2+. These findings underscore the potential of Microcystis EPS as a highly efficient sorbent for heavy metal removal in water treatment, with significant implications for environmental remediation and sustainable water purification.


Assuntos
Metais Pesados , Microcystis , Poluentes Químicos da Água , Purificação da Água , Humanos , Cobre/química , Polímeros/química , Microcystis/metabolismo , Cinética , Ecossistema , Metais Pesados/química , Quelantes , Aminoácidos , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
6.
Food Chem ; 439: 138042, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100881

RESUMO

A novel approach consisting of preselection of peptides using bioinformatics tool followed by final selection using Surface Plasmon Resonance (SPR) - an efficient technique to investigate metal complexing properties of peptides/hydrolysates - was developed. Selected pea hydrolysates and synthetic metal chelating peptides potentially present in pea hydrolysates were investigated for their ability to inhibit the lipid oxidation in emulsions composed of 5 % w/w fish oil and stabilized with Tween® 20. Results indicated that addition of peptides/hydrolysates did not impact the physical stability of emulsions and led to lower level of lipid hydroperoxides. Moreover, peptide KGKSR inhibited the generation of 1-penten-3-ol and hexanal to the same level as ethylenediaminetetraacetic acid (EDTA) did and the formation of 2 ethyl-furan was lower than when EDTA was added. Peptide GRHRQKHS showed same concentration of hexanal as EDTA thus confirming efficacy of using SPR for selecting peptides/hydrolysates to use as antioxidants in emulsions.


Assuntos
Óleos de Peixe , Hidrolisados de Proteína , Emulsões , Ácido Edético , Água , Oxirredução , Antioxidantes , Peptídeos
7.
Acta Pharmaceutica Sinica ; (12): 3572-3582, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1004636

RESUMO

The natural products containing 3-acyl tetramic acid units have a large number of complex and diverse structures, showing a variety of biological activities such as antibacterial, antiviral, anti-tumor and so on, especially antibacterial activity which are regarded as a potential reservoir of new antibiotics. In this paper, the antibacterial activities of various natural products containing 3-acyl tetramic acids and the new research hotspots and directions are reviewed.

8.
Braz. arch. biol. technol ; 62: e19170757, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011528

RESUMO

Abstract Lasia spinosa (L.) Thwaites is a widely used ethnomedicinal plant in Bangladesh. In this study, we investigated phenolic contents, volatile compounds and fatty acids, and essential oil components of extracts prepared from aerial parts of the plant. The main volatile compounds were methyl ester of oleic acid, palmitic acid and stearic acid as determined by GC/MS. Phenolic contents of the extracts were determined qualitatively and quantitatively by HPLC/TOF-MS. Six phenolic compounds (syringic acid, morin, gentistic acid, 4-hydroxybenzoic acid, cinnamic acid, and apigenin) were found in the extracts. GC/MS analysis of steam distilled essential oil showed camphor, α-pinene and δ-3-carene as the main constituents. In DPPH radical scavenging assay, the highest free radical scavenging activity was observed for the methanol extract with an IC50 value of 0.48 ± 0.04 mg/mL, whereas, in metal chelating activity on ferrous ions (Fe2+) assay, the highest chelating activity was observed for hexane extract (IC50 = 0.55 ± 0.08 mg/mL). The extracts and essential oil were tested against five severe human pathogenic bacteria using disc diffusion assay and subsequent MIC values were also determined. All the extracts (except methanol extract) and the essential oil were found to possess potential antimicrobial activity with corresponding inhibition zone and minimum inhibitory concentration (MIC) ranging from 9-23 mm and 62.5-500 µg/mL. This study has been explored the plant Lasia spinosa can be seen as a potential source of biologically active compounds.


Assuntos
Quelantes/análise , Sequestradores de Radicais Livres , Compostos Fenólicos/análise , Compostos Orgânicos Voláteis/análise , Ácidos Graxos/análise
9.
Acta Pharmaceutica Sinica B ; (6): 67-73, 2015.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-329692

RESUMO

A series of genistein-polyamine conjugates (4a-4h) were designed, synthesized and evaluated as multi-functional anti-Alzheimer agents. The results showed that these compounds had significant cholinesterases (ChEs) inhibitory activity. Compound 4b exhibited the strongest inhibition to acetylcholinesterase (AChE) with an IC50 value of 2.75 μmol/L, which was better than that of rivastigmine (5.60 μmol/L). Lineweaver-Burk plot and molecular modeling study showed that compound 4b targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, compound 4b showed potent metal-chelating ability. In addition, it was found that 4a-4h did not affect HepG-2 cell viability at the concentration of 10 μmol/L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA