Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Bioenerg Biomembr ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120858

RESUMO

Diabetic nephropathy (DN) is one of microvascular complication associated with diabetes. Circular RNAs (circRNAs) have been shown to be involved in DN pathogenesis. Hence, this work aimed to explore the role and mechanism of circ_Arf3 in DN. Mouse mesangial cells (MCs) cultured in high glucose (HG) condition were used for functional analysis. Cell proliferation was determined using 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 assays. Western blotting was used to measure the levels of proliferation indicator PCNA and fibrosis-related proteins α-smooth muscle actin (α-SMA), collagen I (Col I), fibronectin (FN), and collagen IV (Col IV). The binding interaction between miR-107-3p and circ_Arf3 or Tmbim6 (transmembrane BAX inhibitor motif containing 6) was confirmed using dual-luciferase reporter and pull-down assays. Circ_Arf3 is a stable circRNA, and the expression of circ_Arf3 was decreased after HG treatment in MCs. Functionally, ectopic overexpression of circ_Arf3 protected against HG-induced proliferation and elevation of fibrosis-related proteins in MCs. Mechanistically, circ_Arf3 directly bound to miR-107-3p, and Tmbim6 was a target of miR-107-3p. Further rescue assay showed miR-107-3p reversed the protective action of circ_Arf3 on MCs function under HG condition. Moreover, inhibition of miR-107-3p suppressed HG-induced proliferation and fibrosis, which were attenuated by Tmbim6 knockdown in MCs. CircRNA Arf3 could suppress HG-evoked mesangial cell proliferation and fibrosis via miR-107-3p/Tmbim6 axis, indicating the potential involvement of this axis in DN progression.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892156

RESUMO

Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of malignant tumor with a poor prognosis and low quality of life in the otolaryngology department. It has been found that microRNA (miRNA) plays an important role in the occurrence and development of various tumors. This study found that the expression level of miRNA-107 (miR-107) in HSCC was significantly reduced. Subsequently, we screened out the downstream direct target gene Neuronal Vesicle Trafficking Associated 1 (NSG1) related to miR-107 through bioinformatics analysis and found that the expression of NSG1 was increased in HSCC tissues. Following the overexpression of miR-107 in HSCC cells, it was observed that miR-107 directly suppressed NSG1 expression, leading to increased apoptosis, decreased proliferation, and reduced invasion capabilities of HSCC cells. Subsequent experiments involving the overexpression and knockdown of NSG1 in HSCC cells demonstrated that elevated NSG1 levels enhanced cell proliferation, migration, and invasion, while the opposite effect was observed upon NSG1 knockdown. Further investigations revealed that changes in NSG1 levels in the HSCC cells were accompanied by alterations in ERK signaling pathway proteins, suggesting a potential regulatory role of NSG1 in HSCC cell proliferation, migration, and invasion through the ERK pathway. These findings highlight the significance of miR-107 and NSG1 in hypopharyngeal cancer metastasis, offering promising targets for therapeutic interventions and prognostic evaluations for HSCC.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hipofaríngeas , Sistema de Sinalização das MAP Quinases , MicroRNAs , Humanos , Masculino , Apoptose/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patologia , Neoplasias Hipofaríngeas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Regen Ther ; 26: 60-70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828010

RESUMO

Background: Osteoarthritis (OA) is the most frequently diagnosed chronic joint disease. CircSEC24A is significantly elevated in OA chondrocytes upon IL-1ß stimulation. However, its biological function in OA is still not fully understood. Methods: The circRNAs-miRNA-mRNA network was predicted by bioinformatics analysis. An in vitro OA chondrocytes model was established by IL-1ß stimulation. The expression of circSEC24A, miR-107-5p, CASP3, apoptosis-related molecules and extracellular matrix (ECM) components were detected by Western blot and qRT-PCR. MTT assay and Annexin V/PI staining were employed to monitor cell viability and apoptosis, respectively. The interaction between circSEC24A and miR-107-5p, as well as the binding between miR-107-5p and CASP3 3' UTR were detected by luciferase reporter and RIP assays. Cytokine secretion was monitored by ELISA assay. The role of circSEC24A was also explored in anterior cruciate ligament transection (ACLT) rat models. Results: CircSEC24A and CASP3 were increased, but miR-107-5p was decreased in rat OA cartilage tissues and OA chondrocytes. CircSEC24A acted as a sponge of miR-107-5p. Knockdown of circSEC24A promoted chondrocyte proliferation, but suppressed chondrocyte apoptosis, ECM degradation and inflammation via sponging miR-107-5p. CASP3 was identified as a miR-107-5p target gene. MiR-107-5p mimics protected against OA progression via targeting CASP3. Silencing of circSEC24A alleviated OA progression in ACLT model. Conclusion: CircSEC24A promotes OA progression through miR-107-5p/CASP3 axis.

4.
Int Immunopharmacol ; 132: 111996, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579563

RESUMO

BACKGROUND: MiR-107 is reduced in sepsis and associated with inflammation regulation. Dietary supplementation with polyunsaturated fatty acids (ω3-PUFA) can increase the expression of miR-107; this study investigated whether the ω3-PUFA can effectively inhibit neuroinflammation and improve cognitive function by regulating miR-107 in the brain. METHODS: The LPS-induced mouse model of neuroinflammation and the BV2 cell inflammatory model were used to evaluate the effects of ω3-PUFA on miR-107 expression and inflammation. Intraventricular injection of Agomir and Antagomir was used to modulate miR-107 expression. HE and Nissl staining for analyzing hippocampal neuronal damage, immunofluorescence analysis for glial activation, RT-qPCR, and Western blot were conducted to examine miR-107 expression and inflammation signalling. RESULTS: The result shows that LPS successfully induced the mouse neuroinflammation model and BV2 cell inflammation model. Supplementation of ω3-PUFA effectively reduced the secretion of pro-inflammatory factors TNFα, IL1ß, and IL6 induced by LPS, improved cognitive function impairment, and increased miR-107 expression in the brain. Overexpression of miR-107 in the brain inhibited the nuclear factor κB (NFκB) pro-inflammatory signalling pathway by targeting PIEZO1, thus suppressing microglial and astrocyte activation and reducing the release of inflammatory mediators, which alleviated neuroinflammatory damage and improved cognitive function in mice. miR-107, as an intron of PANK1, PANK1 is subject to PPAR α Adjust. ω3-PUFA can activate PPARα, but ω3-PUFA upregulates brain miR-107, and PPARα/PANK1-related pathways may not be synchronized, and further research is needed to confirm the specific mechanism by which ω3-PUFA upregulates miR-107. CONCLUSION: The miR-107/PIEZO1/NFκB p65 pathway represents a novel mechanism underlying the improvement of neuroinflammation by ω3-PUFA.


Assuntos
Ácidos Graxos Ômega-3 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , MicroRNAs , Fator de Transcrição RelA , Regulação para Cima , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Masculino , Fator de Transcrição RelA/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Citocinas/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos
5.
Int J Rheum Dis ; 27(3): e15090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443978

RESUMO

OBJECTIVES: Steroid-induced osteonecrosis of the femoral head (SONFH) is characterized by impaired osteogenesis in bone marrow mesenchymal stem cells (BMSCs). This study investigates the role of lysine-specific demethylase 5A (KDM5A) in SONFH to identify potential therapeutic targets. METHODS: Human BMSCs were isolated and characterized for cell surface markers and differentiation capacity. A SONFH cell model was established using dexamethasone treatment. BMSCs were transfected with KDM5A overexpression vectors or si-KDM5A, and the expression of KDM5A, miR-107, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) was assessed. Alizarin red staining was used to observe mineralization nodules, while alkaline phosphatase activity and cell viability were measured. The enrichment of KDM5A and histone 3 lysine 4 trimethylation (H3K4me3) on the promoters of RUNX2, OCN, and OPN was analyzed. The binding between miR-107 and KDM5A 3'UTR was validated, and the combined effect of miR-107 overexpression and KDM5A overexpression on BMSC osteogenic differentiation was evaluated. RESULTS: KDM5A was upregulated in BMSCs from SONFH. Inhibition of KDM5A promoted osteogenic differentiation of BMSCs, associated with increased RUNX2, OCN, and OPN promoters. KDM5A bound to the promoters of RUNX2, OCN, and OPN, leading to reduced H3K4me3 levels and downregulation of their expression. Overexpression of miR-107 inhibited KDM5A and enhanced BMSC osteogenic differentiation. CONCLUSION: KDM5A negatively regulates BMSC osteogenic differentiation by modulating H3K4me3 levels on the promoters of key osteogenic genes. miR-107 overexpression counteracts the inhibitory effect of KDM5A on osteogenic differentiation. These findings highlight the potential of targeting the KDM5A/miR-107 axis for SONFH therapy.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , Histonas , Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Cabeça do Fêmur , Lisina , MicroRNAs/genética , Proteína 2 de Ligação ao Retinoblastoma/genética
6.
Comput Biol Med ; 172: 108221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452473

RESUMO

BACKGROUND: Gastric carcinoma (GC) remains a significant therapeutic challenge, garnering widespread attention. Oxymatrine (OMT), an active component of the traditional Chinese medicine compound Kushen injection (CKI), has shown promising results in combination with chemotherapy for the treatment of GC. However, the molecular mechanisms underlying OMT's therapeutic effects in GC have yet to be elucidated. METHODS: The transcriptomic expression data of HGC-27 post-OMT intervention were obtained through microarray sequencing, while the miRNA and mRNA sequencing data for GC patients were sourced from the TCGA database. The mechanism of OMT intervention in GC is analyzed in multiple aspects, including Protein-Protein Interactions (PPI), Competitive Endogenous RNA (ceRNA) networks, correlation and co-expression analyses, immune infiltration, and clinical implications. RESULTS: By analyzing key modules, five critical mRNAs were identified, and their interacting miRNAs were predicted to construct a ceRNA network. Among these, TGFBR2 and hsa-miR-107 have correlations or co-expression relationships with other genes in the network. They are differentially expressed in most other cancers, associated with prognosis, and have diagnostic value. TGFBR2 also exhibits immune infiltration phenomena, and its high expression is linked to poor patient prognosis. Low expression of hsa-miR-107 is associated with poor patient prognosis. OMT may act on the TGFß/Smad signaling pathway or negatively regulate the WNT signaling pathway through the hsa-miR-107/BTRC axis, thereby inhibiting the onset and progression of GC. CONCLUSION: The mechanisms of OMT intervention in GC are diverse, TGFBR2 and hsa-miR-107 may serve as prognostic molecular biomarkers or potential therapeutic targets.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Biologia Computacional/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , RNA Mensageiro/genética , Neoplasias Gástricas/genética
7.
Genet Test Mol Biomarkers ; 28(4): 165-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487920

RESUMO

Background: Micro RNAs are new diagnostic markers and therapeutic targets in breast cancer research. miR-107 and miR-126 have been reported to be linked with the pathogenesis of breast cancer. The present study investigates the levels of expression of miR-107 and miR-126 in patients with breast cancer to find their correlation with the risk of breast cancer in Amritsar, Punjab, Northwest India. Material and Methods: In total, 200 subjects, 100 patients with breast cancer and 100 controls, were enrolled to screen the expression of miR-107 and miR-126 using quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. The Livak method (2-ΔΔCt) was used to calculate the fold change of the expression of micro RNAs. Student t-test was used to calculate the significant change in the expression of miRNAs in patients as compared with controls. Spearman rank correlation coefficient and ROC were conducted. The value of p < 0.05 was considered to indicate a statistically significant difference. Results: miR-107 was downregulated in patients with breast cancer as compared with controls (fold change = 0.467; p = 0.114) but not statistically significant. The expression of miR-126 was found to be 5.37 times elevated in patients with breast cancer, specifically in stage I and stage III patients (p = 0.009), compared with controls, which may indicate its oncogenic activity. The ROC analyses revealed that miR-126 could be a potential diagnostic marker. In conclusion oncogenic behavior of miR-126 is suggestive of its role in pathogenesis in patients with breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Adulto , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética , Índia/epidemiologia , Fatores de Risco , Idoso , Predisposição Genética para Doença/genética
8.
AMB Express ; 14(1): 16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302631

RESUMO

Chinese Hamster Ovary (CHO) cells are widely employed as host cells for biopharmaceutical production. The manufacturing of biopharmaceuticals poses several challenges, including restricted growth potential and inadequate productivity of the host cells. MicroRNAs play a crucial role in regulating gene expression and are considered highly promising tools for cell engineering to enhance protein production. Our study aimed to evaluate the effects of miR-107, which is recognized as an onco-miR, on erythropoietin-producing CHO cells (CHO-hEPO). To assess the impact of miR-107 on CHO cells, a DNA plasmid containing miR-107 was introduced to CHO-hEPO cells through transfection. Cell proliferation and viability were assessed using the trypan blue dye exclusion method. Cell cycle analysis was conducted by utilizing propidium iodide (PI) staining. The quantification of EPO was determined using an immunoassay test. Moreover, the impact of miR-107 on the expression of downstream target genes was evaluated using qRT-PCR. Our findings highlight and underscore the substantial impact of transient miR-107 overexpression, which led to a remarkable 2.7-fold increase in EPO titers and a significant 1.6-fold increase in the specific productivity of CHO cells (p < 0.01). Furthermore, this intervention resulted in significant enhancements in cell viability and growth rate (p < 0.05). Intriguingly, the overexpression of miR­107 was linked to the downregulation of LATS2, PTEN, and TSC1 genes while concurrently driving upregulation in transcript levels of MYC, YAP, mTOR, and S6K genes within transgenic CHO cells. In conclusion, this study collectively underscores the feasibility of utilizing cancer-associated miRNAs as a powerful tool for CHO cell engineering. However, more in-depth exploration is warranted to unravel the precise molecular intricacies of miR-107's effects in the context of CHO cells.

9.
Kaohsiung J Med Sci ; 40(2): 119-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305705

RESUMO

Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aß (Aß1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1ß) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aß1-40 and Aß1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1ß levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Imunidade , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Drug Chem Toxicol ; : 1-9, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192027

RESUMO

Tauroursodeoxycholic acid (TUDCA) can activate farnesoid X receptor (FXR) to involve in the formation of gallstones. Here, this study aimed to probe the potential mechanism of TUDCA-FXR network in the formation of bile duct stone. The levels of TUDCA, FXR and NCK1 were decreased, while the level of miR-107 was increased in the serum of bile duct stone patients. FXR expression was positively correlated with TUDCA or NCK1 expression in patients, moreover, TUDCA pretreatment in biliary epithelial cells increased the levels of FXR and NCK1, and rescued the decrease of NCK1 caused by FXR knockdown in cells. Then functional analysis showed FXR knockdown caused apoptosis and endoplasmic reticulum stress (ERS) as well as suppressed proliferation in biliary epithelial cells in vitro, which were attenuated by TUDCA pretreatment or NCK1 overexpression Mechanistically, NCK1 was a target of miR-107, which was up-regulated by FXR silencing, and FXR knockdown-induced decrease of NCK1 was rescued by miR-107 inhibition. Additionally, miR-107 expression was negatively correlated with TUDCA expression in bile duct stone patients, and TUDCA pretreatment in biliary epithelial cells decreased miR-107 expression by FXR. Functionally, the pretreatment of TUDCA or FXR agonist suppressed miR-107-evoked apoptosis and ERS in biliary epithelial cells. In conclusion, TUDCA up-regulates FXR expression to activate NCK1 through absorbing miR-107, thus suppressing the apoptosis and ERS in biliary epithelial cells, these results provided a theoretical basis for elucidating the mechanism of bile duct stone formation.

11.
Int J Med Sci ; 21(2): 265-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169586

RESUMO

Melanoma is a highly malignant tumor in the body. Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of various tumors. Emerging evidence demonstrates the critical role of lncRNAs in melanoma development. In this study, we aimed to investigate the expression, biological function and regulatory mechanism of LINC00662 in melanomas. First, we found that LINC00662 was up-regulated in melanoma tissues and cell lines. High expression of LINC00662 in melanomas was associated with a poor patient prognosis. Silencing of LINC00662 suppressed the proliferation, migration, and invasion of melanoma cells in vitro and in vivo, while overexpression of LINC00662 promoted melanoma cell proliferation in vitro. Bioinformatics analysis, dual-luciferase assay, and RIP assay confirmed that LINC00662 competitively regulated miR-107. Silencing of LINC00662 upregulated miR-107 expression in a melanoma cell line. Inhibition of miR-107 significantly reversed the inhibitory effect of LINC00662 silencing on cell proliferation and migration. Furthermore, POU3F2 was validated as a downstream target of LINC00662/miR107 and was downregulated when LINC00662 was silenced. Overexpressing POU3F2 attenuated the effect of si-LINC00662 on cellular functions. In addition, the results also showed that the ß-catenin pathway was involved in a si-LINC00662-induced function in melanoma. Overall, our results confirmed that LINC00662 promoted melanoma progression by sponging miR107 and inducing POU3F2, highlighting the mechanism of the LINC00662/miR-107/POU3F2 axis in melanoma cell proliferation and invasion.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Melanoma/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
12.
Aging (Albany NY) ; 15(23): 13854-13864, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38054824

RESUMO

T-helper (Th) 17/ T-regulatory (Treg) cell dysregulation underlies the pathogenesis of Henoch-Schonlein purpura (HSP). This research focused on the implication/s of the long noncoding RNA (lncRNAs) maternally expressed gene 8 (MEG8) in Th17 and Treg cell differentiation in HSP rats. MEG8, miR-107, signal transducer and activator of transcription-3 (STAT3), receptor-related orphan receptor γt (RORγt), and the transcription factor forkhead box P3 (Foxp3) expression levels were detected using real-time quantitative polymerase chain reaction and Western blot analyses. Flow cytometry was employed for measuring Th17 and Treg cells within the CD4+ T cell population. The interaction between miR-107 and MEG8 or STAT3 was examined. A low proportion of MEG8 and Treg cells together with Th17 cells were denoted within HSP rats. Moreover, MEG8 overexpression altered the Th17/Treg imbalance in peripheral blood CD4+ T-cell population, and the miR-107 mimic and STAT3 silencing reversed this effect. Thus, MEG8 served as a sponge for miR-107, lowering binding activity to STAT3 and thus overexpressing the molecule. Taken together, MEG8 induces an imbalance of Th17/Treg cells through the miR-107/STAT3 axis in HSP rats.


Assuntos
Vasculite por IgA , MicroRNAs , RNA Longo não Codificante , Animais , Ratos , Vasculite por IgA/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Linfócitos T Reguladores/metabolismo , Células Th17
13.
J Surg Res ; 292: 264-274, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666089

RESUMO

INTRODUCTION: Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were exposed to 20 µg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS: LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS: Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.


Assuntos
MicroRNAs , Sepse , Humanos , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana , Calicreínas/genética , Calicreínas/metabolismo , Calicreínas/farmacologia , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
14.
Chin J Physiol ; 66(3): 171-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322627

RESUMO

Long non-coding RNAs (lncRNAs) are important players in cancer development. LncRNA FGD5-AS1 has been reported as a potential oncogene in ovarian cancer (OC). The present paper focused on the action mechanism of FGD5-AS1 in OC. Clinical OC samples were collected for expression analyses of FGD5-AS1, RBBP6, and miR-107. The expression of FGD5-AS1, RBBP6, and miR-107 in OC cells was altered by transfection. OC cell proliferation was assessed by MTT and colony formation assays, and angiogenesis of human umbilical vein endothelial cells (HUVECs) cultured with OC cell supernatants by matrigel angiogenesis assay. The interactions among FGD5-AS1, miR-107, and RBBP6 were detected by luciferase reporter assay. FGD5-AS1 and RBBP6 were strongly expressed and miR-107 was poorly expressed in clinical OC samples and OC cell lines. FGD5-AS1 or RBBP6 overexpression in Hey and SKOV3 cells could potentiate OC cell proliferation and HUVEC angiogenesis, while FGD5-AS1 or RBBP6 knockdown in OC cells inhibited the above cellular processes. FGD5-AS1 targeted miR-107 to positively regulate RBBP6 expression. Additionally, miR-107 overexpression or RBBP6 knockdown in SKOV3 cells partially reversed the FGD5-AS1-dependent stimulation of OC cell proliferation and HUVEC angiogenesis. FGD5-AS1 may act as a promoter of OC via miR-107/RBBP6 axis.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
15.
Transl Cancer Res ; 12(4): 913-927, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37180663

RESUMO

Background: The prognostic significance of miR-107 and miR-17 in patients with acute myeloid leukemia (AML) remains unclear. Methods: A total of 173 patients with de novo AML from the Cancer Genome Atlas database were enrolled in this study and further divided into a chemotherapy group (98 cases) and an allogeneic hematopoietic stem cell transplantation (allo-HSCT) group (75 cases) according to their therapy regimen. Results: In the chemotherapy cohort, high miR-107 or miR-17 expression was associated with poorer overall survival (OS) and event-free survival (EFS). On the other hand, there were no significant differences in OS and EFS between the high- and low-expression subgroups in the allo-HSCT group. Next, we stratified the total number of patients with AML into high- and low-expression groups according to the median expression levels of miR-107 or miR-17. In the high miR-107 or miR-17 expression group, patients treated with allo-HSCT had longer OS than those treated with chemotherapy. In the low miR-107 or miR-17 expression group, no significant differences in OS and EFS were observed between the two therapy subgroups. When patients were further clustered into three groups (both low miR-107 and low miR-17, either high miR-107 or high miR-17, and both high miR-107 and high miR-17), patients with both high miR-107 and high miR-17 expression had the worst OS and EFS of the entire group and of the chemotherapy group. On the other hand, there were no significant differences in OS and EFS among the three subgroups in the allo-HSCT group. Cox regression confirmed the concurrence of high expression of miR-107 and miR-17 might act as an independent prognostic factor for EFS and OS in the entire group and the chemotherapy group. Bioinformatics analysis showed differentially expressed genes (DEGs) associated with miR-107 and miR-17 expression were mainly enriched in multiple metabolic processes. Conclusions: The combination of miR-107 and miR-17 provides prognostic significance for patients with AML and should be considered in the clinical selection of the optimal treatment regimen when deciding between chemotherapy and allo-HSCT.

16.
Biomedicines ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37189806

RESUMO

Osteoarthritis is the most common degenerative joint disorder. MicroRNAs are gene expression regulators that act post-transcriptionally to control tissue homeostasis. Microarray analysis was undertaken in osteoarthritic intact, lesioned and young intact cartilage. Principal component analysis showed that young intact cartilage samples were clustered together; osteoarthritic samples had a wider distribution; and osteoarthritic intact samples were separated into two subgroups, osteoarthritic-Intact-1 and osteoarthritic-Intact-2. We identified 318 differentially expressed microRNAs between young intact and osteoarthritic lesioned cartilage, 477 between young intact and osteoarthritic-Intact-1 cartilage and 332 between young intact and osteoarthritic-Intact-2 cartilage samples. For a selected list of differentially expressed microRNAs, results were verified in additional cartilage samples using qPCR. Of the validated DE microRNAs, four-miR-107, miR-143-3p, miR-361-5p and miR-379-5p-were selected for further experiments in human primary chondrocytes treated with IL-1ß. Expression of these microRNAs decreased in human primary chondrocytes treated with IL-1ß. For miR-107 and miR-143-3p, gain- and loss-of-function approaches were undertaken and associated target genes and molecular pathways were investigated using qPCR and mass spectrometry proteomics. Analyses showed that WNT4 and IHH, predicted targets of miR-107, had increased expression in osteoarthritic cartilage compared to young intact cartilage and in primary chondrocytes treated with miR-107 inhibitor, and decreased expression in primary chondrocytes treated with miR-107 mimic, suggesting a role of miR-107 in chondrocyte survival and proliferation. In addition, we identified an association between miR-143-3p and EIF2 signalling and cell survival. Our work supports the role of miR-107 and miR-143-3p in important chondrocyte mechanisms regulating proliferation, hypertrophy and protein translation.

17.
Future Oncol ; 19(14): 1003-1012, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37199277

RESUMO

Background & aim: MicroRNAs associated with the Notch pathway play a critical role in the progression of pancreatic carcinoma. Our aim was to study the clinical significance of miR-107 and NOTCH2 in pancreatic ductal adenocarcinoma (PDAC). Methods: The circulating miR-107 levels in PDAC and controls were determined by qPCR. NOTCH2 protein (target) expression in tissue of PDAC, periampullary carcinoma, chronic pancreatitis and normal pancreatic tissue was assessed by immunohistochemistry. Results: The circulating miR-107 levels were found to be significantly reduced in PDAC as compared with controls. Additionally, NOTCH2 protein expression was higher in PDAC tissue as compared with controls and was clinically associated with metastasis. Conclusion: Our findings demonstrate the utility of circulating miR-107 as a potential differentiating marker in PDAC.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Humanos , Receptor Notch2/genética , Receptor Notch2/metabolismo , Relevância Clínica , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Pancreáticas
18.
J Asthma Allergy ; 16: 433-445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37102069

RESUMO

Purpose: Airway remodeling is a significant pathological change of asthma. This study aimed to detect differentially expressed microRNAs in the serum of asthma patients and airway smooth muscle cells (ASMCs) of asthmatic mice, exploring their role in the airway remodeling of asthma. Methods: The differentially expressed microRNAs in the serum of mild and moderate-severe asthma patients compared to healthy subjects were revealed using the "limma" package. Gene Ontology (GO) analysis was used to annotate the functions of microRNA target genes. The relative expressions of miR-107 (miR-107-3p in mice sharing the same sequence) in the primary airway smooth muscle cells (ASMCs) of the asthma mice model were tested by RT-qPCR. Cyclin-dependent kinases 6 (Cdk6), a target gene of miR-107, was predicted by algorithms and validated by dual-luciferase reporter assay and Western blot. The roles of miR-107, Cdk6, and protein Retinoblastoma (Rb) in ASMCs were examined by transwell assay and EDU KIT in vitro. Results: The expression of miR-107 was down-regulated in both mild and moderate-severe asthma patients. Intriguingly, the level of miR-107 was also decreased in ASMCs of the asthma mice model. Up-regulating miR-107 suppressed ASMCs' proliferation by targeting Cdk6 and the phosphorylation level of Rb. Increasing the expression of Cdk6 or suppressing Rb activity abrogated the proliferation inhibition effect of ASMCs induced by miR-107. In addition, miR-107 also inhibits ASMC migration by targeting Cdk6. Conclusion: The expression of miR-107 is down-regulated in serums of asthma patients and ASMCs of asthmatic mice. It plays a critical role in regulating the proliferation and migration of ASMCs via targeting Cdk6.

19.
Cancer Cell Int ; 23(1): 51, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934264

RESUMO

BACKGROUND: Non-small cell lung cancer is a heterogeneous disease driven by extensive molecular alterations. Exosomes are small vesicles with diameters ranging from 30 to 150 nm released by various cell types and are important mediators of information transmission in tumor cells. Exosomes contain proteins, lipids, and various types of nucleic acids, including miRNAs and even DNA and RNA. MFI2 Antisense RNA 1 (MFI2-AS1) is a long noncoding RNA known to promote cell proliferation, metastasis and invasion in a variety of malignancies. METHODS: The relative expression of MFI2-AS1 in NSCLC tissues was examined using RNA fluorescence in situ hybridization (FISH) staining. Transwell migration and wound healing assays were used to analyze cell migration and invasion abilities. Tube formation is used to assess angiogenic capacity. CCK8 was used to assess cell proliferation ability. RNA immunoprecipitation (RIP) experiments confirmed that MFI2-AS1 acts as a competing endogenous RNA (ceRNA) for miR-107. Dual-luciferase reporter assays were used to identify potential binding between MFI2-miRNA and target mRNA. In vivo experiments were performed by injecting exosomes into subcutaneous tumors to establish animal models. RESULT: Exosomal MFI2-AS1 increases NFAT5 expression by sponging miR-107, which in turn activates the PI3K/AKT pathway. We found that the MFI2-AS1/miR-107/NFAT5 axis plays an important role in exosome-mediated NSCLC progression, is involved in pre-metastatic niche formation, and can be used as a blood-based biomarker for NSCLC metastasis. CONCLUSION: We demonstrate that MFI2-AS1 is upregulated in exosomes secreted by metastatic NSCLC cells and can be transferred to HUVECs, promoting angiogenesis and migration.

20.
Epigenomics ; 15(2): 61-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802727

RESUMO

A key concept in drug discovery is the identification of candidate therapeutic targets such as long noncoding RNAs (lncRNAs) because of their extensive involvement in neoplasms, and impressionability by smoking. Induced by exposure to cigarette smoke, lncRNA H19 targets and inactivates miR-29, miR-30a, miR-107, miR-140, miR-148b, miR-199a and miR-200, which control the rate of angiogenesis by inhibiting BiP, DLL4, FGF7, HIF1A, HIF1B, HIF2A, PDGFB, PDGFRA, VEGFA, VEGFB, VEGFC, VEGFR1, VEGFR2 and VEGFR3. Nevertheless, these miRNAs are often dysregulated in bladder cancer, breast cancer, colorectal cancer, glioma, gastric adenocarcinoma, hepatocellular carcinoma, meningioma, non-small-cell lung carcinoma, oral squamous cell carcinoma, ovarian cancer, prostate adenocarcinoma and renal cell carcinoma. As such, the present perspective article seeks to establish an evidence-based hypothetical model of how a smoking-related lncRNA known as H19 might aggravate angiogenesis by interfering with miRNAs that would otherwise regulate angiogenesis in a nonsmoking individual.


A primary goal in the treatment of cancer is preventing the formation of new blood vessels, or angiogenesis, within the tumor, because these newly formed capillaries serve to supply tumor cells with oxygen, letting them live for longer periods of time and develop several other unfavorable traits that would complicate the entire treatment process. Although certain molecules are responsible for regulating angiogenesis, others such as lncRNA H19, cause significant deregulation in the level of these antiangiogenic molecules, enhancing tumor vascularization. Because H19 is induced in response to cigarette smoke, individuals who smoke might be at higher risk of treatment failure as a result of accelerated angiogenesis.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Masculino , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Fumantes , Linhagem Celular Tumoral , Proliferação de Células/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA