Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 943506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212694

RESUMO

Functional recovery after peripheral nerve injuries is critically dependent on axonal regeneration. Several autonomous and non-cell autonomous processes regulate axonal regeneration, including the activation of a growth-associated transcriptional program in neurons and the reprogramming of differentiated Schwann cells (dSCs) into repair SCs (rSCs), triggering the secretion of neurotrophic factors and the activation of an inflammatory response. Repair Schwann cells also release pro-regenerative extracellular vesicles (EVs), but is still unknown whether EV secretion is regulated non-cell autonomously by the regenerating neuron. Interestingly, it has been described that nerve activity enhances axonal regeneration by increasing the secretion of neurotrophic factors by rSC, but whether this activity modulates pro-regenerative EV secretion by rSC has not yet been explored. Here, we demonstrate that neuronal activity enhances the release of rSC-derived EVs and their transfer to neurons. This effect is mediated by activation of P2Y receptors in SCs after activity-dependent ATP release from sensory neurons. Importantly, activation of P2Y in rSCs also increases the amount of miRNA-21 present in rSC-EVs. Taken together, our results demonstrate that neuron to glia communication by ATP-P2Y signaling regulates the content of SC-derived EVs and their transfer to axons, modulating axonal elongation in a non-cell autonomous manner.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33116816

RESUMO

INTRODUCTION: MicroRNA-21 (miRNA-21) has been described as one of the most significantly upregulated miRNAs in human breast cancer. However, limited knowledge exists on miRNA-21 expression in breast cancer tissue after neoadjuvant chemotherapy (NAC). PURPOSE: The aim of this study was to assess miRNA-21 expression in the tumor tissues of Brazilian patients with breast cancer who underwent NAC and its correlation with clinicopathological variables. PATIENTS AND METHODS: Utilizing qRT-PCR, miRNA-21 expression in tumor tissue was measured in a cohort of female patients with breast cancer who underwent NAC. The correlation of miRNA-21 expression with breast cancer molecular subtypes and other clinicopathological variables was also assessed. RESULTS: A total of 55 patients were included in the study, and 28 (50.9%) underwent NAC. miRNA-21 was upregulated in patients with breast cancer, regardless of previous exposure to chemotherapy, molecular subtypes, tumor-node-metastasis (TNM) staging and lymph node status of the axilla. miRNA-21 expression did not differ between patients with breast cancer who achieved a pathologic complete response after NAC and healthy controls. CONCLUSION: miRNA-21 was upregulated in the tumor tissue of Brazilian patients with breast cancer regardless of NAC treatment, which reinforces its role as an "oncomiR" and a potential biomarker.

3.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409566

RESUMO

Functional recovery after peripheral nerve damage is dependent on the reprogramming of differentiated Schwann cells (dSCs) into repair Schwann cells (rSCs), which promotes axonal regeneration and tissue homeostasis. Transition into a repair phenotype requires expression of c-Jun and Sox2, which transcriptionally mediates inhibition of the dSC program of myelination and activates a non-cell-autonomous repair program, characterized by the secretion of neuronal survival and regenerative molecules, formation of a cellular scaffold to guide regenerating axons and activation of an innate immune response. Moreover, rSCs release exosomes that are internalized by peripheral neurons, promoting axonal regeneration. Here, we demonstrate that reprogramming of Schwann cells (SCs) is accompanied by a shift in the capacity of their secreted exosomes to promote neurite growth, which is dependent on the expression of c-Jun (also known as Jun) and Sox2 by rSCs. Furthermore, increased expression of miRNA-21 is responsible for the pro-regenerative capacity of rSC exosomes, which is associated with PTEN downregulation and PI3-kinase activation in neurons. We propose that modification of exosomal cargo constitutes another important feature of the repair program of SCs, contributing to axonal regeneration and functional recovery after nerve injury.


Assuntos
Exossomos , MicroRNAs , Axônios , Reprogramação Celular , Exossomos/genética , MicroRNAs/genética , Regeneração Nervosa/genética , Células de Schwann
4.
Lung ; 196(4): 393-400, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29637273

RESUMO

INTRODUCTION: microRNAs (miRNAs) are small non-coding 1RNAs that post-transcriptionally regulate gene expression. Recent evidence shows that adenosine deaminases that act on RNA (ADAR) can edit miRNAs. miRNAs are involved in the development of different diseases, such as idiopathic pulmonary fibrosis (IPF). In IPF, about 40% of the miRNAs are differentially expressed with respect to controls. Among these miRNAs, miRNA-21 has been found over-expressed in IPF and its targets are anti-fibrosing molecules such as PELI1 and SPRY2. The objective of this study is to determine the role of ADAR1 and 2 on the expression of miRNA-21 in human lung fibroblasts trough quantification of gene expression, protein levels, and overexpression of ADAR1 and 2. METHODS: Six control and six fibrotic primary fibroblast cell cultures were used for RNA extraction, ADAR1, ADAR2, PELI1, SPRY2, miRNA-21, and pri-miRNA-21 expression was measured. Subsequently, two fibrotic fibroblast cultures were used for overexpression of ADAR1 and ADAR2, and they were stimulated with TGFß1. Real-time PCR and Western blot were performed. RESULTS: ADAR1 is significantly downregulated in IPF fibroblasts; the overexpression of ADAR1 and ADAR2 reestablishes the expression levels of miRNA-21, PELI1, and SPRY2 in fibroblasts of patients with IPF. CONCLUSION: These changes in the processing of miRNAs have great value in pathology diagnosis, including lung diseases, and play an important role in the understanding of molecular mechanisms involved in the development of different pathologies, as well as representing new therapeutic targets.


Assuntos
Adenosina Desaminase/metabolismo , Fibroblastos/enzimologia , Fibrose Pulmonar Idiopática/enzimologia , Pulmão/enzimologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Estudos de Casos e Controles , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Fator de Crescimento Transformador beta1/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA