Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.501
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39181844

RESUMO

BACKGROUND: The aim of this study was to investigate the impact of exosomes derived from adipose-derived stem cells (ASCs) on complications arising from hyaluronic acid (HA) filler injections. METHODS: An HA hydrogel blended with adipose stem cell-derived exosomes was prepared and administered to the inguinal fat pads of 16 C57BL/6J mice. The control group received only HA filler (HA group), and the study group was treated with a combination of HA filler and exosomes (exoHA group). Biopsy was performed 1 week and 1, 2, 3, and 6 months after the injections. The effects were assessed using hematoxylin and eosin and Masson's trichrome staining for histological examination, immunohistochemistry for collagen type I and Vascular Endothelial Growth Factor (VEGF), RNA sequencing, and quantitative real-time polymerase chain reaction (PCR) (Il6, Ifng, Hif1a, Acta2, Col1a1). RESULTS: RNA sequencing revealed significant downregulation of the hypoxia (false discovery rate [FDR] q = 0.007), inflammatory response (FDR q = 0.009), TNFα signaling via NFκB (FDR q = 0.007), and IL6 JAK-STAT signaling (FDR q = 0.009) gene sets in the exoHA group. Quantitative PCR demonstrated a decrease in expression of proinflammatory cytokines (Il6, P < 0.05; Hif1a, P < 0.05) and fibrosis markers (Acta2, P < 0.05; Col1a1, P < 0.05) within the exoHA group, indicating reduced inflammation and fibrosis. Compared to the exoHA group, the HA group exhibited a thicker and more irregular capsules surrounding the HA filler after 6 months. CONCLUSION: The addition of ASC-derived exosomes to HA fillers significantly reduces inflammation and accelerates collagen capsule maturation, indicating a promising strategy to mitigate the formation of HA filler-related nodules.

2.
Exp Neurol ; 381: 114921, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142369

RESUMO

The dysregulation of Angiotensin-converting enzyme 2 (ACE2) in central nervous system is believed associates with COVID-19 induced cognitive dysfunction. However, the detailed mechanism remains largely unknown. In this study, we performed a comprehensive system genetics analysis on hippocampal ACE2 based on BXD mice panel. Expression quantitative trait loci (eQTLs) mapping showed that Ace2 was strongly trans-regulated, and the elevation of Ace2 expression level was significantly correlated with impaired cognitive functions. Further Gene co-expression analysis showed that Ace2 may be correlated with the membrane proteins in Calcium signaling pathway. Further, qRT-PCR confirmed that SARS-CoV-2 spike S1 protein upregulated ACE2 expression together with eight membrane proteins in Calcium Signaling pathway. Moreover, such elevation can be attenuated by recombinant ACE2. Collectively, our findings revealed a potential mechanism of Ace2 in cognitive dysfunction, which could be beneficial for COVID-19-induced cognitive dysfunction prevention and potential treatment.

3.
Exp Neurol ; 381: 114925, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151596

RESUMO

OBJECTIVES: Absence seizures impair psychosocial function, yet their detailed neuronal basis remains unknown. Recent work in a rat model suggests that cortical arousal state changes prior to seizures and that single neurons show diverse firing patterns during seizures. Our aim was to extend these investigations to a mouse model with studies of neuronal activity and arousal state to facilitate future fundamental investigations of absence epilepsy. METHODS: We performed in vivo extracellular single unit recordings on awake head-fixed C3H/HeJ mice. Mice were implanted with tripolar electrodes for cortical electroencephalography (EEG). Extracellular single unit recordings were obtained with glass micropipettes in the somatosensory barrel cortex, while animals ambulated freely on a running wheel. Signals were digitized and analyzed during seizures and at baseline. RESULTS: Neuronal activity was recorded from 36 cortical neurons in 19 mice while EEG showed characteristic 7-8 Hz spike-wave discharges. Different single neurons showed distinct firing patterns during seizures, but the overall mean population neuronal firing rate during seizures was no different from pre-seizure baseline. However, the rhythmicity of neuronal firing during seizures was significantly increased (p < 0.001). In addition, beginning 10s prior to seizure initiation, we observed a progressive decrease in cortical high frequency (>40 Hz) EEG and an increase in lower frequency (1-39 Hz) activity suggesting decreased arousal state. SIGNIFICANCE: We found that the awake head-fixed C3H/HeJ mouse model demonstrated rhythmic neuronal firing during seizures, and a decreased cortical arousal state prior to seizure onset. Unlike the rat model we did not observe an overall decrease in neuronal firing during seizures. Similarities and differences across species strengthen the ability to investigate fundamental key mechanisms. Future work in the mouse model will identify the molecular basis of neurons with different firing patterns, their role in seizure initiation and behavioral deficits, with ultimate translation to human absence epilepsy.

4.
Mol Nutr Food Res ; 68(16): e2400246, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39107912

RESUMO

SCOPE: Dietary constituents modulate development of obesity and type 2 diabetes. The metabolic impact from different food sources in western diets (WD) on obesity development is not fully elucidated. This study aims to identify dietary sources that differentially affect obesity development and the metabolic processes involved. METHODS AND RESULTS: Mice were fed isocaloric WDs with protein and fat from different food groups, including egg and dairy, terrestrial meat, game meat, marine, vegetarian, and a mixture of all. This study evaluates development of obesity, glucose tolerance, insulin sensitivity, and plasma and cecal metabolome. WD based on marine or vegetarian food sources protects male mice from obesity development and insulin resistance, whereas meat-based diets promote obesity. The intake of different food sources induces marked differences in the lipid-related plasma metabolome, particularly impacting phosphatidylcholines. Fifty-nine lipid-related plasma metabolites are positively associated with adiposity and a distinct cecal metabolome is found in mice fed a marine diet. CONCLUSION: This study demonstrates differences in obesity development between the food groups. Diet specific metabolomic signatures in plasma and cecum associated with adiposity, where a marine based diet modulates the level of plasma and cecal phosphatidylcholines in addition to preventing obesity development.


Assuntos
Ceco , Dieta Ocidental , Resistência à Insulina , Metaboloma , Camundongos Endogâmicos C57BL , Obesidade , Animais , Obesidade/metabolismo , Obesidade/etiologia , Ceco/metabolismo , Masculino , Camundongos , Carne/análise , Adiposidade
5.
Exp Neurol ; 380: 114907, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39103029

RESUMO

Traumatic brain injuries are extremely common, and although most patients recover from their injuries many TBI patients suffer prolonged symptoms and remain at a higher risk for developing cardiovascular disease and neurodegeneration. Moreover, it remains challenging to identify predictors of poor long-term outcomes. Here, we tested the hypothesis that preexisting cerebrovascular impairment exacerbates metabolic and vascular dysfunction and leads to worse outcomes after TBI. Male mice underwent a mild surgical reduction in cerebral blood flow using a model of bilateral carotid artery stenosis (BCAS) wherein steel microcoils were implanted around the carotid arteries. Then, 30 days post coil implantation, mice underwent TBI or sham surgery. Gene expression profiles, cerebral blood flow, metabolic function, oxidative damage, vascular health and angiogenesis were assessed. Single nuclei RNA sequencing of endothelial cells isolated from mice after TBI showed differential gene expression profiles after TBI and BCAS, that were further altered when mice underwent both challenges. TBI but not BCAS increased mitochondrial oxidative metabolism. Both BCAS and TBI decreased cerebrovascular responses to repeated whisker stimulation. BCAS induced oxidative damage and inflammation in the vasculature as well as loss of vascular density, and reduced the numbers of angiogenic tip cells. Finally, intravascular protein accumulation was increased among mice that experienced both BCAS and TBI. Overall, our findings reveal that a prior vascular impairment significantly alters the profile of vascular health and function of the cerebrovasculature, and when combined with TBI may result in worsened outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Circulação Cerebrovascular , Camundongos Endogâmicos C57BL , Animais , Camundongos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Masculino , Circulação Cerebrovascular/fisiologia , Estenose das Carótidas/complicações , Estresse Oxidativo/fisiologia
6.
Genes Nutr ; 19(1): 16, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160527

RESUMO

OBJECTIVE: Cardiac fibrosis is an important contributor to atrial fibrillation (AF). Our aim was to identify biomarkers for AF using bioinformatics methods and explore the regulatory mechanism of miR-450a-2-3p in cardiac fibrosis in mice. METHODS: Two datasets, GSE115574 and GSE79768, were obtained from the Gene Expression Omnibus (GEO) database and subsequently merged for further analysis. Differential gene expression analysis was performed to identify differentially expressed genes (DEGs) and miR-450a-2-3p-related differentially expressed genes (MRDEGs). To investigate the underlying mechanism of cardiac fibrosis, a mouse model was established by treating mice with isoproterenol (ISO) and the miR-450a-2-3p agomir. RESULTS: A total of 127 DEGs and 31 MRDEGs were identified and subjected to Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the functions and pathways involved in AF. In the animal model, histological analysis using HE and Masson staining, as well as quantification of the collagen volume fraction (CVF), was performed. The increased expression of α-smooth muscle actin (α-SMA), collagen type I (COL1), collagen type III (COL3), and extracellular signal-regulated kinase 1/2 (ERK(1/2)) at both the transcriptional and translational levels indicated the significant development of myocardial fibrosis in mice induced with isoproterenol (ISO). In addition, the cross-sectional area of cardiomyocytes and the expression of atrial natriuretic peptide (NPPA) and brain natriuretic peptide (NPPB) were increased in the ISO group compared with the control group. However, after overexpression of the miR-450a-2-3p agomir through caudal vein injection, there was a notable improvement in cardiac morphology in the treated group. The expression levels of α-SMA, COL1, COL3, ERK(1/2), NPPA, and NPPB were also significantly decreased. CONCLUSION: Our study reveals the mechanistic connection between ISO-induced myocardial fibrosis and the miR-450a-2-3p/ERK(1/2) signaling pathway, highlighting its role in the development of cardiac fibrosis. Modulating miR-450a-2-3p expression and inhibiting ERK(1/2) activation are promising approaches for therapeutic intervention in patients with AF.

7.
Microbiome ; 12(1): 147, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113097

RESUMO

BACKGROUND: Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS: Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS: Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.


Assuntos
Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Interleucina-10 , Animais , Humanos , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Disbiose/microbiologia , Interleucina-10/genética , Colite/microbiologia , Fezes/microbiologia , Colo/microbiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Inflamação , Masculino
8.
Brain Behav Immun ; 122: 95-109, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134183

RESUMO

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the rodent hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21 in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. These findings suggest a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, our study highlights a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of ELA.

10.
Regen Ther ; 26: 520-532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39156755

RESUMO

This preclinical proof-of-concept study aimed to evaluate the effectiveness of secretome therapy in diabetic mice with pressure ulcers. We utilized a custom-made hyaluronic acid (HA)-based porous sponge, which was rehydrated either with normal culture medium or secretome derived from human mesenchymal stromal cells (MSCs) to achieve a hydrogel consistency. Following application onto skin ulcers, both the hydrogel-only and the hydrogel + secretome combination accelerated wound closure compared to the vehicle group. Notably, the presence of secretome significantly enhanced the healing effect of the hydrogel, as evidenced by a thicker epidermis and increased revascularization of the healed area compared to the vehicle group. Notably, molecular analysis of healed skin revealed significant downregulation of genes involved in delayed wound healing and abnormal inflammatory response in ulcers treated with the hydrogel + secretome combination, compared to those treated with the hydrogel only. Additionally, we found no significant differences in therapeutic outcomes when comparing the use of secretome from fetal dermal MSCs to that from umbilical cord MSCs. This observation is supported by the proteomic profile of the two secretomes, which suggests a shared molecular signature responsible of the observed therapeutic effects.

11.
J Neuroimmune Pharmacol ; 19(1): 44, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152360

RESUMO

The systemic administration of interleukin-16 (IL-16, 3-30 ng/kg) induced thermal hyperalgesia in mice, that was prevented by the acute injection of an anti-CD4 antibody (1 µg/kg), the depletion of circulating white blood cells by cyclophosphamide or the specific reduction of circulating CD4+ cells provoked by a high dose of an anti-CD4 antibody (30 µg/mouse, 24 h before). IL-16-induced hyperalgesia was locally inhibited after intraplantar (i.pl.) administration of the non-selective cyclooxygenase (COX) inhibitor diclofenac, the COX-1 inhibitor SC-560, the COX-2 inhibitor celecoxib, the TRPV1 antagonist capsazepine or the TRPA1 antagonist HC030031, thus demonstrating that prostaglandins and TRP channels are involved in this effect. The i.pl. administration of low doses of IL-16 (0.1-1 ng) evoked local hyperalgesia suggesting the possibility that IL-16 could participate in hypernociception associated to local tissue injury. Accordingly, IL-16 concentration measured by ELISA was increased in paws acutely inflamed with carrageenan or chronically inflamed with complete Freund´s adjuvant (CFA). This augmentation was reduced after white cell depletion with cyclophosphamide or neutrophil depletion with an anti-Ly6G antibody. Immunofluorescence and flow cytometry experiments showed that the increased concentration of IL-16 levels found in acutely inflamed paws is mainly related to the infiltration of IL-16+ neutrophils, although a reduced number of IL-16+ lymphocytes was also detected in paws inflamed with CFA. Supporting the functional role of IL-16 in inflammatory hypernociception, the administration of an anti-IL-16 antibody dose-dependently reduced carrageenan- and CFA-induced thermal hyperalgesia and mechanical allodynia. The interest of IL-16 as a target to counteract inflammatory pain is suggested.


Assuntos
Hiperalgesia , Inflamação , Interleucina-16 , Animais , Camundongos , Hiperalgesia/tratamento farmacológico , Masculino , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Interleucina-16/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-39158618

RESUMO

RATIONALE AND OBJECTIVE: Rodents acquire food information from their conspecifics and display a preference for the conspecifics' consumed food. This social learning of food information from others promotes the survival of a species, and it is introduced as the socially transmitted food preference (STFP) task. The cholinergic system in the basal forebrain plays a role in the acquisition of STFP. Cannabidiol (CBD), one of the most abundant phytocannabinoids, exerts its therapeutic potential for cognitive deficits through versatile mechanisms of action, including its interaction with the cholinergic system. We hypothesize a positive relationship between CBD and STFP because acetylcholine (ACh) is involved in STFP, and CBD increases the ACh levels in the basal forebrain. MATERIALS AND METHODS: Male C57BL/6J mice were trained to acquire the STFP task. We examined whether CBD affects STFP memory by administering CBD (20 mg/kg, i.p.) before the STFP social training. The involvement of cholinergic system in CBD's effect on STFP was examined by knockdown of brain acetylcholinesterase (AChE), applying a nonselective muscarinic antagonist SCO (3 mg/kg, i.p.) before CBD treatment, and measuring the basal forebrain ACh levels in the CBD-treated mice. RESULTS: We first showed that CBD enhanced STFP memory. Knockdown of brain AChE also enhanced STFP memory, which mimicked CBD's effect on STFP. SCO blocked CBD's memory-enhancing effect on STFP. Our most significant finding is that the basal forebrain ACh levels in the CBD-treated mice, but not their control counterparts, were positively correlated with mice's STFP memory performance. CONCLUSION: This study indicates that CBD enhances STFP memory in mice. Specifically, those which respond to CBD by increasing the muscarinic-mediated ACh signaling perform better in their STFP memory.

13.
Front Pharmacol ; 15: 1411642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139632

RESUMO

Background: Chronic intestinal pseudo-obstruction (CIPO) is a type of intestinal dysfunction with symptoms of intestinal blockage but without the actual mechanical obstruction. Currently, there are no drugs available to treat this disease. Herein, we report the characterization of the PrP-SCA7-92Q transgenic (Tg) line as a valuable CIPO mouse model and investigated the tolerability and efficacy of the 5-hydroxytryptamine type-4 receptor (5HT4R) agonist velusetrag as a promising pharmacological treatment for CIPO. Methods: To test the pharmacodynamics of velusetrag, 8-week-old SCA7 Tg mice, which express human mutated Ataxin-7 gene containing 92 CAG repeats under the mouse prion protein promoter, were treated for 5 weeks by oral route with velusetrag at 1 and 3 mg/kg doses or vehicle. Body weight was monitored throughout the treatment. After sacrifice, the small intestine and proximal colon were collected for whole-mount immunostaining. Untreated, age-matched, C57BL/6J mice were also used as controls in comparison with the other experimental groups. Results: Analysis of SCA7 Tg mice showed tissue damage and alterations, mucosal abnormalities, and ulcers in the distal small intestine and proximal colon. Morphological changes were associated with significant neuronal loss, as shown by decreased staining of pan-neuronal markers, and with accumulation of ataxin-7-positive inclusions in cholinergic neurons. Administration of velusetrag reversed intestinal abnormalities, by normalizing tissue damage and re-establishing the normal level of glia/neuron's count in both the small and large intestines. Conclusion: We demonstrated that the PrP-SCA7-92Q Tg line, a model originally developed to mimic spinocerebellar ataxia, is suitable to study CIPO pathology and can be useful in establishing new therapeutic strategies, such as in the case of velusetrag. Our results suggest that velusetrag is a promising compound to treat patients affected by CIPO or intestinal dysmotility disease.

14.
Glia ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137117

RESUMO

Alzheimer's disease (AD) is a major cause of progressive dementia characterized by memory loss and progressive neurocognitive dysfunction. However, the molecular mechanisms are not fully understood. To elucidate the molecular mechanism contributing to AD, an integrated analytical workflow was deployed to identify pivotal regulatory target within the RNA-sequencing (RNA-seq) data of the temporal cortex from AD patients. Soluble transforming growth factor beta receptor 3 (sTGFBR3) was identified as a critical target in AD, which was abnormally elevated in AD patients and AD mouse models. We then demonstrated that sTGFBR3 deficiency restored spatial learning and memory deficits in amyloid precursor protein (APP)/PS1 and streptozotocin (STZ)-induced neuronal impairment mice after its expression was disrupted by a lentiviral (LV) vector expressing shRNA. Mechanistically, sTGFBR3 deficiency augments TGF-ß signaling and suppressing the NF-κB pathway, thereby reduced the number of disease-associated microglia (DAMs), inhibited proinflammatory activity and increased the phagocytic activity of DAMs. Moreover, sTGFBR3 deficiency significantly mitigated acute neuroinflammation provoked by lipopolysaccharide (LPS) and alleviated neuronal dysfunction induced by STZ. Collectively, these results position sTGFBR3 as a promising candidate for therapeutic intervention in AD.

15.
Sci Rep ; 14(1): 18944, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147839

RESUMO

Bilharzia is a parasitic flatworm that causes schistosomiasis, a neglected tropical illness worldwide. Praziquantel (PZQ) is a commercial single treatment of schistosomiasis so alternative drugs are needed to get rid of its side effects on the liver. The current study aimed to estimate the effective role of Ficus carica nanoparticles (Fc-NPCs), silver nanoparticles (Ag-NPCs) and Ficus carica nanoparticles loaded on silver nanoparticles (Fc-Ag NPCs) on C57BL/6 black female mice infected by Schistosoma mansoni and treated with PZQ treatment. It was proved that schistosomiasis causes liver damage in addition to the PZQ is ineffective as an anti-schistosomiasis; it is recorded in the infected mice group and PZQ treated group as in liver function tests, oxidative stress markers & anti-oxidants, pro-inflammatory markers, pro-apoptotic and anti-apoptotic markers also in liver cells' DNA damage. The amelioration in all tested parameters has been clarified in nanoparticle-protected mice groups. The Fc-Ag NPCs + PZQ group recorded the best preemptive effects as anti-schistosomiasis. Fc-NPCs, Ag-NPCs and Fc-Ag NPCs could antagonize PZQ effects that were observed in amelioration of all tested parameters. The study showed the phytochemicals' nanoparticles groups have an ameliorated effect on the health of infected mice.


Assuntos
Ficus , Nanopartículas Metálicas , Praziquantel , Schistosoma mansoni , Esquistossomose mansoni , Prata , Animais , Ficus/química , Camundongos , Praziquantel/farmacologia , Feminino , Schistosoma mansoni/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Camundongos Endogâmicos C57BL , Fígado/parasitologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cercárias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico
16.
Elife ; 132024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150053

RESUMO

Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.


People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.


Assuntos
COVID-19 , Catepsina L , Hiperglicemia , SARS-CoV-2 , COVID-19/mortalidade , COVID-19/metabolismo , Catepsina L/metabolismo , Catepsina L/genética , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Masculino , Feminino , Complicações do Diabetes , Pessoa de Meia-Idade , Comorbidade , Diabetes Mellitus , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Adulto , Idoso , Complexo de Golgi/metabolismo
17.
Stem Cell Reports ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39151431

RESUMO

Human immune system (HIS) mice generated using human CD34+ hematopoietic stem cells serve as a pivotal model for the in vivo evaluation of immunotherapies for humans. Yet, HIS mice possess certain limitations. Rats, due to their size and comprehensive immune system, hold promise for translational experiments. Here, we describe an efficacious method for long-term immune humanization, through intrahepatic injection of hCD34+ cells in newborn immunodeficient rats expressing human SIRPα. In contrast to HIS mice and similar to humans, HIS rats showed in blood a predominance of T cells, followed by B cells. Immune humanization was also high in central and secondary lymphoid organs. HIS rats treated with the anti-human CD3 antibody were depleted of human T cells, and human cytokines were detected in sera. We describe for the first time a method to efficiently generate HIS rats. HIS rats have the potential to be a useful model for translational immunology.

18.
Acta Pharmacol Sin ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152295

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive impairments. Despite the limited efficacy of current treatments for AD, the 1,2,4-oxadiazole structure has garnered significant attention in medicinal chemistry due to its potential impact on mGluR1 and its association with AD therapy. In this study, a series of novel 1,2,4-oxadiazole derivatives were designed, synthesized, and evaluated for the neuroprotective effects in human neuroblastoma (SH-SY5Y) cells. Among all the derivatives tested, FO-4-15 (5f) existed the lowest cytotoxicity and the highest protective effect against H2O2. Based on these in vitro results, FO-4-15 was administered to 3×Tg mice and significantly improved the cognitive impairments of the AD mice. Pathological analysis showed that FO-4-15 significantly reduced Aß accumulation, Tau hyper-phosphorylation, and synaptic impairments in the 3×Tg mice. Dysfunction of the CaMKIIα/Fos signaling pathway in 3×Tg mice was found to be restored by FO-4-15 and the necessity of the CaMKIIα/Fos for FO-4-15 was subsequently confirmed by the use of a CaMKIIα inhibitor in vitro. Beyond that, mGluR1 was identified to be a potential target of FO-4-15, and the interaction of FO-4-15 and mGluR1 was displayed by Ca2+ flow increase, molecular docking, and interaction energy analysis. The target of FO-4-15 was further confirmed in vitro by JNJ16259685, a nonselective inhibitor of mGluR1. These findings suggest that FO-4-15 may hold promise as a potential treatment for Alzheimer's disease.

19.
Cardiovasc Diabetol ; 23(1): 298, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143620

RESUMO

BACKGROUND: Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS: This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS: We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION: This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Modelos Animais de Doenças , Metabolismo Energético , Redes Reguladoras de Genes , Fígado , Camundongos Knockout , Proteômica , Receptores de LDL , Transdução de Sinais , Animais , Tecido Adiposo Marrom/metabolismo , Fígado/metabolismo , Metabolismo Energético/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Masculino , Fibrinogênio/metabolismo , Fibrinogênio/genética , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos , Regulação da Expressão Gênica , Mapas de Interação de Proteínas
20.
Trends Neurosci ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39147688

RESUMO

The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA