Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1415931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952450

RESUMO

Exploring the effects of seasonal variation on the gut microbiota of cold-water fish plays an important role in understanding the relationship between seasonal variation and cold-water fish. Gut samples of cold-water fish and environmental samples were collected during summer and winter from the lower reaches of the Yalong River. The results of the 16S rRNA sequencing showed that significant differences were identified in the composition and diversity of gut bacteria of cold-water fish. Co-occurrence network complexity of the gut bacteria of cold-water fish was higher in summer compared to winter (Sum: nodes: 256; edges: 20,450; Win: nodes: 580; edges: 16,725). Furthermore, from summer to winter, the contribution of sediment bacteria (Sum: 5.3%; Win: 23.7%) decreased in the gut bacteria of cold-water fish, while the contribution of water bacteria (Sum: 0%; Win: 27.7%) increased. The normalized stochastic ratio (NST) and infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP) showed that deterministic processes played a more important role than stochastic processes in the microbial assembly mechanism of gut bacteria of cold-water fish. From summer to winter, the contribution of deterministic processes to gut bacteria community assembly mechanisms decreased, while the contribution of stochastic processes increased. Overall, these results demonstrated that seasonal variation influenced the gut bacteria of cold-water fish and served as a potential reference for future research to understand the adaptation of fish to varying environments.

2.
Sci Total Environ ; 947: 174395, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992353

RESUMO

Ginger, a vegetable export from China, is well-known for its spicy flavour and use in traditional Chinese medicine. By examining the interactions of ginger plants' microbiome and metabolome, we can gain insights to advance agriculture, the environment, and other fields. Our study used metataxonomic analysis to investigate ginger plants' prokaryotic and fungal microbiomes in open fields and greenhouses. We also conducted untargeted metabolomic analysis to identify specific metabolites closely associated with ginger microbiome assembly under both agricultural conditions. Various bacteria and fungi were classified as generalists or specialists based on their ability to thrive in different environments and microbial niches. Our results indicate that ginger plants grown in greenhouses have a greater prokaryotic diversity, while those grown in open fields exhibit a greater fungal diversity. We have identified specific co-occurring prokaryotic and fungal genera associated with ginger plant agroecosystems that can enhance the health and growth of ginger plants while maintaining a healthy environment. In the open field these genera include Sphingomonas, Methylobacterium-Methylorubrum, Bacillus, Acidovorax, Rhizobium, Microbacterium, unclassified_f_Comamonadaceae, Herbaspirillum, Klebsiella, Enterobacter, Chryseobacterium, Nocardioides, Subgroup_10, Enterococcus, Pseudomonas, Devosia, g_unclassified_f_Chaetomiaceae, Pseudaleuria, Mortierella, Cheilymenia, and Pseudogymnoascus. In the greenhouse, the enriched genera were Rhizobium, Stenotrophomonas, Aureimonas, Bacillus, Nocardioides, Pseudomonas, Enterobacter, Delftia, Trichoderma, Mortierella, Cheilymenia, Schizothecium, and Actinomucor. Our research has identified several previously unknown microbial genera for ginger plant agroecosystems. Furthermore, our study has important implications for understanding the correlation between ginger's microbiome and metabolome profiles in diverse environments and may pave the way for future research. Specific microbial genera in crop production environments are associated with essential metabolites, including Safingol, Docosatrienoic acid, P-acetaminophen, and Hypoglycin B.

3.
Environ Res ; 257: 119410, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38871273

RESUMO

Microorganisms are crucial components of freshwater ecosystems. Understanding the microbial community assembly processes and niche characteristics in freshwater ecosystems, which are poorly understood, is crucial for evaluating microbial ecological roles. The Yunnan Plateau lakes in China represent a freshwater ecosystem that is experiencing eutrophication due to anthropogenic activities. Here, variation in the assembly and niche characteristics of both prokaryotic and microeukaryotic communities was explored in Yunnan Plateau lakes across two seasons (dry season and rainy season) to determine the impacts of rainfall and environmental conditions on the microbial community and niche. The results showed that the environmental heterogeneity of the lakes decreased in the rainy season compared to the dry season. The microbial (bacterial and microeukaryotic) α-diversity significantly decreased during the rainy season. Deterministic processes were found to dominate microbial community assembly in both seasons. ß-Diversity decomposition analysis revealed that microbial community compositional dissimilarities were dominated by species replacement processes. The co-occurrence networks indicated reduced species complexity for microbes and a destabilized network for prokaryotes prior to rainfall, while the opposite was found for microeukaryotes following rainfall. Microbial niche breadth decreased significantly in the rainy season. In addition, lower prokaryotic niche overlap, but greater microeukaryotic niche overlap, was observed after rainfall. Rainfall and environmental conditions significantly affected the microbial community assembly and niche characteristics. It can be concluded that rainfall and external pollutant input during the seasonal transition alter the lake environment, thereby regulating the microbial community and niche in these lakes. Our findings offer new insight into microbiota assembly and niche patterns in plateau lakes, further deepening the understanding of freshwater ecosystem functioning.


Assuntos
Lagos , Microbiota , Chuva , Estações do Ano , Lagos/microbiologia , China , Bactérias/classificação , Bactérias/isolamento & purificação
4.
Food Res Int ; 187: 114327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763631

RESUMO

The mechanical process has a widely usage in large-scale high-temperature Daqu (HTD) enterprises, however, the quality of the mechanical HTD is gapped with the HTD by traditional process. Currently, the understanding of the mechanism behind this phenomenon is still over-constrained. To this end, the discrepancies in fermentation parameters, enzymatic characteristics, microbial assembly and succession patterns, metabolic phenotypes were compared between traditional HTD and mechanical HTD in this paper. The results showed that mechanical process altered the temperature ramping procedure, resulting in a delayed appearance of the peak temperature. This alteration shifted the assembly pattern of the initial bacterial community from determinism to stochasticity, while having no impact on the stochastic assembly pattern of the fungal community. Concurrently, mechanical pressing impeded the accumulation of arginase, tetramethylpyrazine, trimethylpyrazine, 2-methoxy-4-vinylphenol, and butyric acid, as the target dissimilarities in metabolism between traditional HTD and mechanical HTD. Pearson correlation analysis combined with the functional prediction further demonstrated that Bacillus, Virgibacillus, Oceanobacillus, Kroppenstedtia, Lactobacillus, and Monascus were mainly contributors to metabolic variances. The Redundancy analysis (RDA) of fermented environmental factors on functional ASVs indicated that high temperature, high acid and low moisture were key positive drivers on the microbial metabolism for the characteristic flavor in HTD. Based on these results, heterogeneous mechanisms between traditional HTD and mechanical HTD were explored, and controllable metabolism targets were as possible strategies to improve the quality of mechanical HTD.


Assuntos
Fermentação , Microbiologia de Alimentos , Temperatura Alta , Manipulação de Alimentos/métodos , Fenótipo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Fungos/metabolismo
5.
Water Res ; 256: 121600, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640563

RESUMO

A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.


Assuntos
Carbono , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Nitrogênio/metabolismo , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo
6.
Environ Microbiome ; 19(1): 18, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504378

RESUMO

BACKGROUND: Microbial communities are of tremendous importance for ecosystem functioning and yet we know little about the ecological processes driving the assembly of these communities in the environment. Here, we used an unprecedented experimental approach based on the manipulation of physical distance between neighboring cells during soil colonization to determine the role of bacterial interactions in soil community assembly. We hypothesized that experimentally manipulating the physical distance between bacterial cells will modify the interaction strengths leading to differences in microbial community composition, with increasing distance between neighbors favoring poor competitors. RESULTS: We found significant differences in both bacterial community diversity, composition and co-occurrence networks after soil colonization that were related to physical distancing. We show that reducing distances between cells resulted in a loss of bacterial diversity, with at least 41% of the dominant OTUs being significantly affected by physical distancing. Our results suggest that physical distancing may differentially modulate competitiveness between neighboring species depending on the taxa present in the community. The mixing of communities that assembled at high and low cell densities did not reveal any "home field advantage" during coalescence. This confirms that the observed differences in competitiveness were due to biotic rather than abiotic filtering. CONCLUSIONS: Our study demonstrates that the competitiveness of bacteria strongly depends on cell density and community membership, therefore highlighting the fundamental role of microbial interactions in the assembly of soil communities.

7.
Environ Sci Pollut Res Int ; 31(9): 13075-13088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240967

RESUMO

Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system. The results demonstrated that the overall diversity of microbial communities exhibited fluctuations as the system progressed. The dominant phyla observed were Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, accounting for over 85.4% of the total relative abundances. At the genus level, bacteria associated with fermentation displayed a high relative abundance, particularly during days 75 to 180. A random-forest machine-learning model identified a group of microbes that confirmed the substantial contribution of fermentation. During the process of fermentation, microorganisms predominantly utilized propionate formation as the main pathway for acidogenesis, followed by acetate and butyrate formation. In terms of nitrogen and sulfur cycles, dissimilatory nitrate reduction and assimilatory sulfate reduction played significant roles. Furthermore, stochastic ecological processes had a dominant effect during the experiment. Dispersal limitation primarily governed the assembly process almost the entire experimental period, indicating the strong adaptability and metabolic plasticity of microorganisms in response to environmental variations. This experiment provides valuable insights into the metabolic mechanisms and microbial assembly associated with sewer systems.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Proteobactérias , Águas Residuárias , Bacteroidetes
8.
Microbiol Res ; 279: 127549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056172

RESUMO

Microbial communities within seeds play a vital role in transmitting themselves to the next generation of plants. These microorganisms significantly impact seed vigor and early seedling growth, for successful crop establishment. Previous studies reported on seed-associated microbial communities and their influence on processes like dormancy release, germination, and disease protection. Modern sequencing and conventional methods reveal microbial community structures and environmental impacts, these information helps in microbial selection and manipulation. These studies form the foundation for using seed microbiomes to enhance crop resilience and productivity. While existing research has primarily focused on characterizing microbiota in dried mature seeds, a significant gap exists in understanding how these microbial communities assemble during seed development. The review also discusses applying seed-associated microorganisms to improve crops in the context of climate change. However, limited knowledge is available about the microbial assembly pattern on seeds, and their impact on plant growth. The review provides insight into microbial composition, functions, and significance for plant health, particularly regarding growth promotion and pest control.


Assuntos
Microbiota , Sementes , Germinação , Plântula , Produtos Agrícolas , Microbiota/genética
9.
Ecotoxicol Environ Saf ; 269: 115739, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016191

RESUMO

The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.


Assuntos
Microbiota , Traqueófitas , Chumbo/toxicidade , Chumbo/metabolismo , Plantas , Bactérias , Zinco/toxicidade , Zinco/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo
10.
Sci Total Environ ; 912: 169740, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38160820

RESUMO

Biological N fixation (BNF) is an important N input process for terrestrial ecosystems. Long-term N application increases the availability of N, but may also lead to phosphorus (P) deficiency or an imbalance between N and P. Here, we performed a 5-year N application experiment in a subtropical Phyllostachys heterocycla forest in site and a P application experiment in vitro to investigate the effect of N application on the BNF rate and its regulatory factor. The BNF rate, nifH gene, free-living diazotrophic community composition and plant properties were measured. We found that N application suppressed the BNF rate and nifH gene abundance, whereas the BNF rate in soils with added P was significantly higher overall than that in soils without added P. Moreover, we identified a key diazotrophic assembly (Mod#2), primarily comprising Bradyrhizobium, Geobacter, Desulfovibrio, Anaeromyxobacter, and Pseudodesulfovibrio, which explained 77 % of the BNF rate variation. There was a significant positive correlation between the Mod#2 abundance and soil available P, and the random forest results showed that soil available P is the most important factor affecting the Mod#2 abundance. Our findings highlight the importance of soil P availability in regulating the activities of key diazotrophs, and thus increasing P supply may help to promote N accumulation and primary productivity through facilitating the BNF process in forest ecosystems.


Assuntos
Ecossistema , Fixação de Nitrogênio , Fixação de Nitrogênio/fisiologia , Nitrogênio/análise , Fósforo , Microbiologia do Solo , Solo , Poaceae
11.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816673

RESUMO

The root-associated soil microbiome contributes immensely to support plant health and performance against abiotic and biotic stressors. Understanding the processes that shape microbial assembly in root-associated soils is of interest in microbial ecology and plant health research. In this study, 37 plant species were grown in the same soil mixture for 10 months, whereupon the root-associated soil microbiome was assessed using amplicon sequencing. From this, the contribution of direct and indirect plant effects on microbial assembly was assessed. Plant species and plant-induced changes in soil physicochemistry were the most significant factors that accounted for bacterial and fungal community variation. Considering that all plants were grown in the same starting soil mixture, our results suggest that plants, in part, shape the assembly of their root-associated soil microbiome via their effects on soil physicochemistry. With the increase in phylogenetic ranking from plant species to class, we observed declines in the degree of community variation attributed to phylogenetic origin. That is, plant-microbe associations were unique to each plant species, but the phylogenetic associations between plant species were not important. We observed a large degree of residual variation (> 65%) not accounted for by any plant-related factors, which may be attributed to random community assembly.


Assuntos
Microbiota , Microbiologia do Solo , Filogenia , Solo , Bactérias/genética , Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera
12.
Environ Sci Technol ; 57(43): 16414-16423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844141

RESUMO

Urban ambient air contains a cocktail of antibiotic resistance genes (ARGs) emitted from various anthropogenic sites. However, what is largely unknown is whether the airborne ARGs exhibit site-specificity or their pathogenic hosts persistently exist in the air. Here, by retrieving 1.2 Tb metagenomic sequences (n = 136), we examined the airborne ARGs from hospitals, municipal wastewater treatment plants (WWTPs) and landfills, public transit centers, and urban sites located in seven of China's megacities. As validated by the multiple machine learning-based classification and optimization, ARGs' site-specificity was found to be the most apparent in hospital air, with featured resistances to clinical-used rifamycin and (glyco)peptides, whereas the more environmentally prevalent ARGs (e.g., resistance to sulfonamide and tetracycline) were identified being more specific to the nonclinical ambient air settings. Nearly all metagenome-assembled genomes (MAGs) that possessed the site-featured resistances were identified as pathogenic taxa, which occupied the upper-representative niches in all the neutrally distributed airborne microbial community (P < 0.01, m = 0.22-0.50, R2 = 0.41-0.86). These niche-favored putative resistant pathogens highlighted the enduring antibiotic resistance hazards in the studied urban air. These findings are critical, albeit the least appreciated until our study, to gauge the airborne dimension of resistomes' features and fates in urban atmospheric environments.


Assuntos
Genes Bacterianos , Metagenoma , Cidades , Antibacterianos/farmacologia , China
13.
Front Microbiol ; 14: 1223204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869666

RESUMO

Ulva spp., one of the most important providers of marine ecosystem services, has gained substantial attention lately in both ecological and applicational aspects. It is known that macroalgae and their associated microbial community form an inseparable unit whose intimate relationship can affect the wellbeing of both. Different cultivation systems, such as integrated multi-trophic aquaculture (IMTA), are assumed to impact Ulva bacterial community significantly in terms of compositional guilds. However, in such a highly dynamic environment, it is crucial to determine how the community dynamics change over time. In the current study, we characterized the microbiota associated with Ulva fasciata grown as a biofilter in an IMTA system in the Gulf of Aqaba (Eilat, Israel) over a developmental period of 5 weeks. The Ulva-associated microbial community was identified using the 16S rRNA gene amplicon sequencing technique, and ecological indices were further analyzed. The Ulva-associated microbiome revealed a swift change in composition along the temporal succession, with clusters of distinct communities for each timepoint. Proteobacteria, Bacteroidetes, Planctomycetes, and Deinococcus-Thermus, the most abundant phyla that accounted for up to 95% of all the amplicon sequence variants (ASVs) found, appeared in all weeks. Further analyses highlighted microbial biomarkers representing each timepoint and their characteristics. Finally, the presence of highly abundant species in Ulva microbiota yet underestimated in previous research (such as phyla Deinococcus-Thermus, families Saprospiraceae, Thiohalorhabdaceae, and Pirellulaceae) suggests that more attention should be paid to the temporal succession of the assembly of microbes inhabiting macroalgae in aquaculture, in general, and IMTA, in particular. Characterizing bacterial communities associated with Ulva fasciata from an IMTA system provided a better understanding of their associated microbial dynamics and revealed this macroalgae's adaptation to such a habitat.

14.
FEMS Microbiol Ecol ; 99(10)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37660279

RESUMO

Substrate geochemistry is an important factor influencing early microbial development after glacial retreat on nutrient-poor geological substrates in the High Arctic. It is often difficult to separate substrate influence from climate because study locations are distant. Our study in the retreating Nordenskiöldbreen (Svalbard) is one of the few to investigate biogeochemical and microbial succession in two adjacent forefields, which share the same climatic conditions but differ in their underlying geology. The northern silicate forefield evolved in a classical chronosequence, where most geochemical and microbial parameters increased gradually with time. In contrast, the southern carbonate forefield exhibited high levels of nutrients and microbial biomass at the youngest sites, followed by a significant decline and then a gradual increase, which caused a rearrangement in the species and functional composition of the bacterial and fungal communities. This shuffling in the early stages of succession suggests that high nutrient availability in the bedrock could have accelerated early soil succession after deglaciation and thereby promoted more rapid stabilization of the soil and production of higher quality organic matter. Most chemical parameters and bacterial taxa converged with time, while fungi showed no clear pattern.


Assuntos
Camada de Gelo , Solo , Solo/química , Svalbard , Camada de Gelo/microbiologia , Microbiologia do Solo , Bactérias/genética , Minerais
15.
Sci Total Environ ; 904: 166797, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673267

RESUMO

River network is a common form of lotic ecosystems. Variances in river connection modes would form networks with significantly different structures, and further affect aquatic organisms. Microbial communities are vital organisms of river networks, they participate in numerous biogeochemical processes. Identifying associations between microbial community and structural features of river networks are essential for maintaining environmental quality. Thus, dendritic (DRN) and trellised river networks (TRN) were studied by combining molecular biological tools, ecological theory and hydrodynamic calculation. Results illustrated that river connectivity, a vital structural feature exhibiting mass transport ability of river network, increased relative importance of homogeneous selection processes in microbial assembly, which would further shape community with alternative stable states. Between the two researched river networks, DRN possessed higher connectivity, which made homogeneous selection as the driving force in community assembly. The microbial communities in DRN were consisted of species occupying similar ecological niche, and exhibited two alternative stable states, which can decrease influences of environmental disturbance on community composition. On the contrary, lower connectivity of TRN decreased proportions of homogeneous selection in community assembly, which further led to species occupying varied ecological niche. The microbial community exhibited only one stable state, and environmental disturbance would cause loss of ecological niche and significantly alter community composition. This study could provide useful information for the optimization of river connection engineering.


Assuntos
Microbiota , Rios , Organismos Aquáticos , Engenharia
16.
Front Microbiol ; 14: 1231839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700860

RESUMO

The sea-level rise during the Holocene (11-0 ky BP) and its resulting sedimentation and biogeochemical processes may control microbial life in Arctic sediments. To gain further insight into this interaction, we investigated a sediment core (up to 10.7 m below the seafloor) from the Chuckchi Shelf of the western Arctic Ocean using metabarcoding-based sequencing and qPCR to characterize archaeal and bacterial 16S rRNA gene composition and abundance, respectively. We found that Arctic Holocene sediments harbor local microbial communities, reflecting geochemical and paleoclimate separations. The composition of bacterial communities was more diverse than that of archaeal communities, and specifically distinct at the boundary layer of the sulfate-methane transition zone. Enriched cyanobacterial sequences in the Arctic middle Holocene (8-7 ky BP) methanogenic sediments remarkably suggest past cyanobacterial blooms. Bacterial communities were phylogenetically influenced by interactions between dispersal limitation and environmental selection governing community assembly under past oceanographic changes. The relative influence of stochastic and deterministic processes on the bacterial assemblage was primarily determined by dispersal limitation. We have summarized our findings in a conceptual model that revealed how changes in paleoclimate phases cause shifts in ecological succession and the assembly process. In this ecological model, dispersal limitation is an important driving force for progressive succession for bacterial community assembly processes on a geological timescale in the western Arctic Ocean. This enabled a better understanding of the ecological processes that drive the assembly of communities in Holocene sedimentary habitats affected by sea-level rise, such as in the shallow western Arctic shelves.

17.
Environ Int ; 177: 108004, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295164

RESUMO

Dustbins function as critical infrastructures for urban sanitation, creating a distinct breeding ground for microbial assemblages. However, there is no information regarding the dynamics of microbial communities and the underlying mechanism for community assembly on dustbin surfaces. Here, surface samples were collected from three sampling zones (business building, commercial street and residential community) with different types (kitchen waste, harmful waste, recyclables, and others) and materials (metallic and plastic); and distribution pattern and assembly of microbial communities were investigated by high-throughput sequencing. Bacterial and fungal communities showed the distinct community variations across sampling zones and waste sorting. Core community and biomarker species were significantly correlated with the spatial distribution of overall community. The detection of pathogens highlighted the potential risk of surface microbiome. Human skin, human feces and soil biomes were the potential source environments of the surface microbiomes. Neutral model prediction suggested that microbial community assembly was significantly driven by stochastic processes. Co-association patterns varied with sampling zones and waste types, and neutral amplicon sequence variants (ASVs) that fall within the 95 % confidence intervals of neutral model were largely involved in the stability of microbial networks. These findings improve our understanding of the distribution pattern and the underlying assembly of microbial community on the dustbin surface, thus enabling prospective prediction and assessment of urban microbiomes and their impacts on human health.


Assuntos
Microbiota , Eliminação de Resíduos , Humanos , Consórcios Microbianos , Estudos Prospectivos , Solo , Processos Estocásticos
18.
J Hazard Mater ; 457: 131726, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257378

RESUMO

Microorganisms play an important role in the degradation of pollutants. However, they also cause problems in drinking water distribution systems, such as pipe corrosion and biofilm growth. The microbial assembly mechanisms and molecular ecological networks associated with different drinking water treatment processes have not yet been clearly analyzed. Therefore, this study investigated the microbiomes of three processes (coal filtration-activated carbon, ozone-activated carbon and UV, and ozone-activated carbon) during different seasons. The results showed that the microbial composition and diversity among the different processes and during different seasons. Water treatment processes had deterministic effects on the microbial assembly process and significantly changed the composition of rare and abundant species, altering the size and modules of molecular ecology networks. Rare species considered as keystone species play important roles in microbial ecology and microbial community construction. Ozone-activated carbon and UV/chlorination decreased the bacterial concentration, increased the deterministic process of microbial assembly, and significantly reduced the size of the network, which is of great significance to microbial control in drinking water. This research broadens our perspectives on the microbial assembly associated with drinking water treatment processes and contributes to ensuring the safe supply of drinking water.


Assuntos
Água Potável , Microbiota , Ozônio , Purificação da Água , Carvão Vegetal , Purificação da Água/métodos
19.
Microorganisms ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985249

RESUMO

As microorganisms are very sensitive to changes in the lake environment, a comprehensive and systematic understanding of the structure and diversity of lake sediment microbial communities can provide feedback on sediment status and lake ecosystem protection. Xiao Xingkai Lake (XXL) and Xingkai Lake (XL) are two neighboring lakes hydrologically connected by a gate and dam, with extensive agricultural practices and other human activities existing in the surrounding area. In view of this, we selected XXL and XL as the study area and divided the area into three regions (XXLR, XXLD, and XLD) according to different hydrological conditions. We investigated the physicochemical properties of surface sediments in different regions and the structure and diversity of bacterial communities using high-throughput sequencing. The results showed that various nutrients (nitrogen, phosphorus) and carbon (DOC, LOC, TC) were significantly enriched in the XXLD region. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phyla in the sediments, accounting for more than 60% of the entire community in all regions. Non-metric multidimensional scaling analysis and analysis of similarities confirmed that ß-diversity varied among different regions. In addition, the assembly of bacterial communities was dominated by a heterogeneous selection in different regions, indicating the important influence of sediment environmental factors on the community. Among these sediment properties, the partial least squares path analysis revealed that pH was the best predictor variable driving differences in bacterial communities in different regions, with higher pH reducing beta diversity among communities. Overall, our study focused on the structure and diversity of bacterial communities in lake sediments of the Xingkai Lake basin and revealed that high pH causes the ß-diversity of bacterial communities in the sediment to decrease. This provides a reference for further studies on sediment microorganisms in the Xingkai Lake basin in the future.

20.
J Hazard Mater ; 452: 131208, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966625

RESUMO

Antibiotics are increasingly used and released into the marine environment due to the rapid development of mariculture, resulting in spread of antibiotic resistance. The pollution, distribution, and characteristics of antibiotics, antibiotic resistance genes (ARGs) and microbiomes have been investigated in this study. Results showed that 20 antibiotics were detected in Chinese coastal environment, with predominance of erythromycin-H2O, enrofloxacin and oxytetracycline. In coastal mariculture sites, antibiotic concentrations were significantly higher than in control sites, and more types of antibiotics were detected in the South than in the North of China. Residues of enrofloxacin, ciprofloxacin and sulfadiazine posed high resistance selection risks. ß-Lactam, multi-drug and tetracycline resistance genes were frequently detected with significantly higher abundance in the mariculture sites. Of the 262 detected ARGs, 10, 26, and 19 were ranked as high-risk, current-risk, future-risk, respectively. The main bacterial phyla were Proteobacteria and Bacteroidetes, of which 25 genera were zoonotic pathogens, with Arcobacter and Vibrio in particular ranking in the top10. Opportunistic pathogens were more widely distributed in the northern mariculture sites. Phyla of Proteobacteria and Bacteroidetes were the potential hosts of high-risk ARGs, while the conditional pathogens were associated with future-risk ARGs, indicating a potential threat to human health.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Enrofloxacina , Bactérias/genética , Bacteroidetes , Proteobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA