Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(8): e0076024, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916328

RESUMO

Biosorption and biomineralization are commonly used for the immobilization of metal ions. Biosorption is commonly used as a green method to enrich rare earth ions from wastewater. However, little attention has been paid to the facilitating role of biomineralization in the enrichment of rare earth ions. In this study, a strain of Bacillus sp. DW015, isolated from ion adsorption type rare earth ores and a urease-producing strain Sporosarcina pasteurii were used to enrich rare earth elements (REEs) from an aqueous solution. The results indicate that biomineralization accelerates the enrichment of Terbium(III) compared to biosorption alone. Kinetic analysis suggests that the main mode of action of DW015 was biosorption, following pseudo-second-order kinetics (R2 = 0.998). The biomineralization of DW015 did not significantly contribute to the enrichment of Tb(III), whereas excessive biomineralization of S. pasteurii led to a decrease in the enrichment of Tb(III). A synergistic system of biosorption and biomineralization was established by combining the two bacteria, with the optimal mixed bacteria (S. pasteurii:DW015) ratio being 1:19. This study provides fundamental support for the synergistic effect of biosorption and biomineralization and offers a new reference for future microbial-based enrichment methods. IMPORTANCE: A weak microbially induced calcium carbonate precipitation (MICP) promotes the enrichment of Tb(III) by bacteria, while a strong MICP leads to the release of Tb(III). However, existing explanations cannot elucidate these mechanisms. In this study, the morphology of the bioprecipitation and the degree of Tb(III) enrichment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The data revealed that MICP could drive stable attachment of Tb(III) onto the cell surface, forming a Tb-CaCO3 mixed solid phase. Excessive rapid rate of calcite generation could disrupt the Tb(III) adsorption equilibrium, leading to the release of Tb(III). Therefore, in order for Tb(III) to be stably embedded in calcite, it is necessary to have a sufficient number of adsorption sites on the bacteria and to regulate the rate of MICP. This study provides theoretical support for the process design of MICP for the enrichment of rare earth ions.


Assuntos
Bacillus , Biomineralização , Sporosarcina , Térbio , Sporosarcina/metabolismo , Bacillus/metabolismo , Térbio/metabolismo , Térbio/química , Adsorção , Cinética , Águas Residuárias/microbiologia , Águas Residuárias/química
2.
Environ Sci Pollut Res Int ; 31(2): 2466-2480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066275

RESUMO

Minerals such as calcium carbonate, which is prevalent in marble and limestone, are present naturally in rocks. Both physicochemical processes and microbial processes can result in the creation of calcium carbonate in nature, as is well documented. In this study, microbiologically induced calcite precipitation potential of three different Travertine-type water sources (Pamukkale Travertine Spring (PTS), Pamukkale Travertine Terraces (PTT), and Red Travertine of Karahayit (RTK)) using three different incubation media (NB, NB3, and ATCC1832) were investigated. After enrichment with ATCC1832 media, urease assays were positive for all of the microbial sources. The PTS and PTT were cultured with ATCC1832 medium for 48 h, which showed the best results for urease activity and microbial growth among other samples. Metagenome analyses indicated that PTT enriched with ATCC1832 media contains > 99% Firmicutes, while PTS enriched with ATCC1832 contains > 99% Proteobacteria at the Phylum level. Results from SEM-EDX and XRD analysis revealed that calcite and/or vaterite were the minerals that emerged from the mineralization of the PTS and PTT during incubation. The type of calcium carbonate crystals tended to change from one form to another when the incubation period extends from 72 to 120 h. Both the PTS and the PTT were able to precipitate calcite within the sand column. However, the bacteria from the PTT (26% CaCO3) outperformed those from the PTS (18% CaCO3) in terms of calcium carbonate deposition on the 21st day of incubation.


Assuntos
Carbonato de Cálcio , Areia , Carbonato de Cálcio/química , Urease , Minerais , Bactérias , Precipitação Química
3.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38111211

RESUMO

AIM: This study aimed to understand the morphological effects of (in)organic additives on microbially induced calcium carbonate precipitation (MICP). METHODS AND RESULTS: MICP was monitored in real time in the presence of (in)organic additives: bovine serum albumin (BSA), biofilm surface layer protein A (BslA), magnesium chloride (MgCl2), and poly-l-lysine. This monitoring was carried out using confocal microscopy to observe the formation of CaCO3 from the point of nucleation, in comparison to conditions without additives. Complementary methodologies, namely scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction, were employed to assess the visual morphology, elemental composition, and crystalline structures of CaCO3, respectively, following the crystals' formation. The results demonstrated that in the presence of additives, more CaCO3 crystals were produced at 100 min compared to the reaction without additives. The inclusion of BslA resulted in larger crystals than reactions containing other additives, including MgCl2. BSA induced a significant number of crystals from the early stages of the reaction (20 min) but did not have a substantial impact on crystal size compared to conditions without additives. All additives led to a higher content of calcite compared to vaterite after a 24-h reaction, with the exception of MgCl2, which produced a substantial quantity of magnesium calcite. CONCLUSIONS: The work demonstrates the effect of several (in)organic additives on MICP and sets the stage for further research to understand additive effects on MICP to achieve controlled CaCO3 precipitation.


Assuntos
Carbonato de Cálcio , Sporosarcina , Carbonato de Cálcio/metabolismo , Cloreto de Magnésio/metabolismo , Sporosarcina/metabolismo , Precipitação Química , Microscopia Eletrônica de Varredura
4.
Eng Life Sci ; 22(12): 760-768, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514530

RESUMO

When using microbiologically induced calcium carbonate precipitation (MICP) to produce calcium carbonate crystals in the cavities between mineral particles to consolidate them, the inhomogeneous distribution of the precipitated calcium carbonate poses a problem for the production of construction materials with consistent parameters. Various approaches have been investigated in the literature to increase the homogeneity of consolidated samples. One approach can be the targeted application of ureolytic organisms by 3D printing. However, to date, this possibility has been little explored in the literature. In this study, the potential to use MICP to print calcium carbonate layers on mineral particles will be investigated. For this purpose, a dispensing unit was modified to apply both a suspension of Sporosarcina pasteurii and a calcination solution containing urea and calcium chloride onto quartz sand. The study showed that after passing through the nozzle, S. pasteurii preserved consistent cell vitality and therefore its potential of MICP. Applying cell suspension and calcination solution through a printing nozzle resulted in a layer of calcium carbonate crystals on quartz sand. This observation demonstrated the proof of concept of printing calcium carbonate by MICP through the nozzle of a dispensing unit. Furthermore, it was shown that cell suspensions of S. pasteurii can be stored at 4°C for a period of 17 days while maintaining its optical density, urease activity and cell vitality and therefore the potential for MICP. This initial concept could be extended in further research to printing three-dimensional (3D) objects to solve the problem of homogeneity in consolidated mineral particles.

5.
Environ Sci Technol ; 56(15): 11017-11026, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35858290

RESUMO

Amorphous calcium carbonate (ACC) plays an important role in microbially induced calcium carbonate precipitation (MICP), which has great potential in broad applications such as building restoration, CO2 sequestration, and bioremediation of heavy metals, etc. However, our understanding of ACC is still limited. By combining microscopy of cell-laden microdroplets with confocal Raman microspectroscopy, we investigated the ACC dynamics during MICP. The results show that MICP inside droplets can be divided into three stages: liquid, gel-like ACC, and precipitated CaCO3 stages. In the liquid stage, the droplets are transparent. As the MICP process continues into the gel-like stage, the ACC structure appears and the droplets become opaque. Subsequently, dissolution of the gel-like structure is accompanied by growth of precipitated CaCO3 crystals. The size, morphology, and lifetime of the gel-like structures depend on the Ca2+ concentration. Using polystyrene colloids as tracers, we find that the colloids exhibit diffusive behavior in both the liquid and precipitated CaCO3 stages, while their motion becomes arrested in the gel-like ACC stage. These results provide direct evidence for the formation-dissolution process of the ACC-formed structure and its gel-like mechanical properties. Our work provides a detailed view of the time evolution of ACC and its mechanical properties at the microscale level, which has been lacking in previous studies.


Assuntos
Sporosarcina , Carbonato de Cálcio/química , Precipitação Química
6.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684545

RESUMO

Tailing sand contains a large number of heavy metals and sulfides that are prone to forming acid mine drainage (AMD), which pollutes the surrounding surface environment and groundwater resources and damages the ecological environment. Microbially induced calcium carbonate precipitation (MICP) technology can biocement heavy metals and sulfides in tailing sand and prevent pollution via source control. In this study, through an unconfined compressive strength test, permeability test, and toxic leaching test (TCLP), the curing effect of MICP was investigated in the laboratory and the effect of grouting rounds on curing was also analyzed. In addition, the curing mechanism of MICP was studied by means of Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). The experimental results showed that MICP could induce calcium carbonate precipitation through relatively complex biochemical and physicochemical reactions to achieve the immobilization of heavy metals and sulfides and significantly reduce the impact of tailing sand on the surrounding environment.


Assuntos
Carbonato de Cálcio , Areia , Carbonato de Cálcio/química , Carbonatos/química , Precipitação Química , Ferro , Sulfetos/química
7.
Sci Total Environ ; 740: 140194, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563888

RESUMO

Urea hydrolysis is an initiating step of microbially induced calcium carbonate precipitation (MICP) which can be used as a stabilization technology in heavy metals contaminated soil. In this study, inhibition of urea hydrolysis was investigated in Cu-contaminated soil. At soil Cu concentration from 0 to 1000 mg/kg, the amount of urea hydrolyzed (i.e., initial urea 450 mM) ranged from 449.3 ± 1.4 to 10.5 ± 0.8 mM. Correspondingly, decrease in calcium carbonate precipitation was commensurate with the inhibition of urea hydrolysis. Interestingly, 2.75 times more urea were hydrolyzed in 350 days-aged soil than in freshly spiked soil even at the same soil Cu concentration of 250 mg/kg, suggesting the inhibitory effect of Cu in soil solution. Indeed, the concentrations of Cu in soil solution were 4.9 ± 0.1 and 21.0 ± 0.3 mg/L, respectively. Since MICP application involved an increase in Ca2+ concentration in soil, its effect was also determined. In the freshly spiked soil with 250 mg-Cu/kg, the Cu concentration in the soil solution increased from 7.6 ± 0.1 to 21.0 ± 0.3 mg/L as the calcium concentration increased from 0 to 450 mM. Accordingly, urea hydrolysis was significantly reduced from 217.5 ± 59.0 to 11.9 ± 0.2 mM. The effect of pH was also determined, showing that 32.8 ± 3.4 and 205.9 ± 32.5 mM of urea was hydrolyzed at soil pH of 4.5 and 7.8, respectively. The reason was attributed to the great difference in free Cu concentration in soil solution (i.e., 3.3 and 0.3 mg/L at pH 4.5 and 7.8, respectively). The relationship between amounts of urea hydrolyzed and free Cu concentrations was established and half-maximal inhibition concentration (IC50) of free Cu concentration in soil solution was predicted to be 0.39 mg/L.


Assuntos
Carbonato de Cálcio , Solo , Precipitação Química , Concentração de Íons de Hidrogênio , Hidrólise , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA