Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
J Conserv Dent Endod ; 27(7): 780-784, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39262589

RESUMO

Context: The purpose of this article is to evaluate the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of Herbal Irrigants. Aim: The aim of the study was to evaluate MIC and MBC of herbal extracts of Azadirachta indica, Curcuma longa, and Green Tea Against Enterococcus faecalis. Methodology: The MIC and MBC of extracts of A . indica (neem), C. longa (turmeric), and Green Tea were evaluated to establish them as standard root canal irrigants against E. faecalis using agar well diffusion method. Statistical Analysis Used: The collected data were statistically analyzed using the Statistical Package for the Social Sciences (SPSS) software. Results: The present study found that green tea exhibited the most substantial antimicrobial activity among the tested herbal extracts, which was comparable to chlorhexidine. Although A. indica and C. longa required higher concentrations for effectiveness, their antimicrobial properties were also apparent. Conclusions: Within the constraints of this study, it can be concluded that green tea could be considered a promising alternative to chlorhexidine in treating endodontic infections due to its substantial antimicrobial activity against E. faecalis at lower concentrations.

2.
Ann Clin Microbiol Antimicrob ; 23(1): 71, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127671

RESUMO

Brucella spp. are facultative intracellular pathogens that cause zoonosis- brucellosis worldwide. There has been a trend of the re-emergence of brucellosis worldwide in recent years. The epidemic situation of brucellosis is serious in Xinjiang. To analyze the epidemic situation of Brucella spp. in Xinjiang among humans and animals, this study identified 144 Brucella isolates from Xinjiang using classical identification and 16 S rRNA sequencing. MLVA, drug resistance testing, and wgSNP detection were also performed. At the same time, analysis was conducted based on the published data of Brucella isolates worldwide. The results showed that the dominant species was B. melitensis biovar 3, which belonged to GT42 (MLVA-8 typing) and the East Mediterranean lineage. The correlation among isolates was high both in humans or animals. The isolates in Xinjiang exhibited higher polymorphism compared to other locations in China, with polymorphism increasing each year since 2010. No amikacin/kanamycin-resistant strains were detected, but six rifampicin-intermediate isolates were identified without rpoB gene variation. The NJ tree of the wgSNP results indicated that there were three main complexes of the B. melitensis epidemic in Xinjiang. Based on the results of this study, the prevention and control of brucellosis in Xinjiang should focus on B. melitensis, particularly strains belonging to B. melitensis bv.3 GT42 (MLVA-8 typing) and East Mediterranean lineage. Additionally, the rifampicin- and trimethoprim-sulfamethoxazole- resistance of isolates in Xinjiang should be closely monitored to avoid compromising the therapeutic efficacy and causing greater losses. These results provide essential data for the prevention and control of brucellosis in Xinjiang and China. Although the isolates from Xinjiang have significant characteristics among Chinese isolates and can reflect the epidemiological situation of brucellosis in China to some extent, this study cannot represent the characteristics of isolates from other regions.


Assuntos
Antibacterianos , Brucella melitensis , Brucelose , Genótipo , Brucelose/epidemiologia , Brucelose/microbiologia , Brucella melitensis/genética , Brucella melitensis/efeitos dos fármacos , Brucella melitensis/isolamento & purificação , China/epidemiologia , Humanos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Filogenia , Polimorfismo Genético , Epidemias
3.
Eur Urol Focus ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089966

RESUMO

BACKGROUND AND OBJECTIVE: Urinary tract infections (UTIs) are common infections affecting the urinary system, predominantly caused by bacterial pathogens, with Escherichia coli being the most frequent pathogen. Infections of the kidney (eg, pyelonephritis) are severe and challenging to treat, due to the specific tissue microenvironment. In this study, the influence of different parameters mimicking the kidney environment on the effectiveness of antibiotics prescribed for pyelonephritis on the growth of uropathogenic strains was analyzed. METHODS: To investigate the influence of different factors mimicking the kidney environment, we tested the effect of different kidney-representative concentrations of sodium chloride and urea, and different pH values on the efficacy of ertapenem, levofloxacin, and ceftriaxone. The effectiveness was assessed by determining the minimal inhibitory concentrations (MICs) against various E. coli strains. KEY FINDINGS AND LIMITATIONS: The study revealed that pH significantly influences the MIC values of levofloxacin. Acidification of the pH led to an increase of the MIC values, while an alkaline pH had the opposite effect. The influence of sodium chloride and urea concentrations was strain and antibiotic specific. Since three different antibiotics were tested in this study, further research with additional antibiotics is warranted. CONCLUSIONS AND CLINICAL IMPLICATIONS: These results suggest that the physicochemical conditions within the kidney can substantially influence the success of antibiotic therapy for pyelonephritis. Therefore, it is crucial for clinicians to consider these factors when selecting and dosing antibiotics. Further research is needed to evaluate a broader range of antibiotics and additional environmental parameters, to develop a more comprehensive understanding of how the kidney environment affects antimicrobial activity. This knowledge will be vital in optimizing treatment strategies for pyelonephritis, ultimately improving patient outcomes. PATIENT SUMMARY: The physicochemical conditions within the kidney influence the success of antibiotic therapy for pyelonephritis. Our findings are vital in optimizing treatment strategies and will ultimately improve patient outcomes.

4.
Eur J Clin Microbiol Infect Dis ; 43(9): 1777-1785, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995342

RESUMO

BACKGROUND: Infections caused by Klebsiella pneumoniae are common and result in high mortality rates. In vitro studies demonstrated the potency of cefoperazone/sulbactam (CPZ/SUL) against Klebsiella pneumoniae. However, the clinical efficacy of CPZ/SUL for the treatment of K. pneumoniae bacteremia has not been studied. OBJECTIVES: This study aimed to associate the clinical outcomes of patients with bacteremia with the minimal inhibitory concentrations (MICs) of CPZ/SUL against the causative K. pneumoniae isolates. METHODS: This multicenter, retrospective study was conducted in Taiwan between July 2017 and April 2021. Patients with K. pneumoniae bacteremia treated with CPZ/SUL were enrolled in this study. CPZ/SUL MICs were determined using the agar dilution method. Data on the patients' clinical outcomes and characteristics were collected and analyzed. RESULTS: In total, 201 patients were enrolled. Among the causative K. pneumoniae isolates, 180 (89.5%) were susceptible to CPZ/SUL. Most patients (n = 156, 77.6%) had favorable outcomes. The 30-day mortality rate was 11.9% (n = 24). Multivariate risk analyses showed that higher APACHE II score (Odds Ratio [OR], 1.14; Confidence Interval [CI], 1.07-1.21; p < 0.001), metastatic tumors (OR, 5.76; CI, 2.31-14.40; p < 0.001), and causative K. pneumoniae CPZ/SUL MICs > 16 µg/ml (OR, 4.30; CI, 1.50-12.27; p = 0.006) were independently associated with unfavorable outcomes. CONCLUSION: Patients with K. pneumoniae bacteremia treated with CPZ/SUL at a ratio 1:1 had favorable outcomes when the CPZ/SUL MICs were ≤ 16 µg/ml. Patients with higher APACHE II scores and metastatic tumors had unfavorable outcomes.


Assuntos
Antibacterianos , Bacteriemia , Cefoperazona , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sulbactam , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Sulbactam/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Masculino , Feminino , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Idoso , Cefoperazona/uso terapêutico , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Taiwan , Idoso de 80 Anos ou mais , Adulto
5.
Microbiol Spectr ; 12(8): e0033324, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916352

RESUMO

The incidence of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) infection is increasing and is associated with vancomycin treatment failures. However, studies investigating the risk factors for treatment failure in hVISA infection are limited. Patients with hVISA bacteremia treated with vancomycin over 7 days between August 2008 and June 2020 were enrolled in this study. Clinical and microbiological characteristics were compared between vancomycin treatment failure and success groups to identify the risk factors for vancomycin treatment failure. Among the 180 patients with hVISA bacteremia, 102 patients treated with vancomycin over 7 days were included. Vancomycin treatment failed in 80 (78%) patients. Patients in the vancomycin treatment failure group were older (P < 0.001) and more frequently had solid cancer (P = 0.04) than those in the vancomycin treatment success group. Solid organ transplantation (SOT) was more frequent (P < 0.001) in the vancomycin treatment success group. The Charlson comorbidity index (P = 0.01) and Acute Physiology and Chronic Health Evaluation II scores (P < 0.001) were higher in the vancomycin treatment failure group. In multivariate analysis, independent risk factors for vancomycin treatment failure were old age and severity of bacteremia. SOT and vancomycin minimal inhibitory concentration (MIC) ≤ 1.0 mg/L using the broth microdilution (BMD) method were associated with successful vancomycin treatment. Old age and infection severity were independent risk factors for vancomycin treatment failure. Vancomycin MIC using the BMD method is an important risk factor for vancomycin treatment failure, and its use should be considered in hVISA bacteremia.IMPORTANCEIn this study, we assessed the clinical and microbiological characteristics of heterogeneous vancomycin-intermediated Staphylococcus aureus (hVISA) bacteremia and identified risk factors for vancomycin treatment failure. We found that advanced age and severity of infection were independent risk factors for vancomycin treatment failure. On the other hand, solid organ transplantation and a low vancomycin minimal inhibitory concentration were associated with successful vancomycin treatment. This study highlights the importance of vancomycin minimal inhibitory concentration in hVISA bacteremia.


Assuntos
Antibacterianos , Bacteriemia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus aureus , Falha de Tratamento , Vancomicina , Humanos , Vancomicina/uso terapêutico , Vancomicina/efeitos adversos , Masculino , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Feminino , Fatores de Risco , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Pessoa de Meia-Idade , Idoso , Antibacterianos/uso terapêutico , Antibacterianos/efeitos adversos , Staphylococcus aureus/efeitos dos fármacos , Estudos Retrospectivos , Adulto , Idoso de 80 Anos ou mais , Staphylococcus aureus Resistente à Vancomicina/efeitos dos fármacos
6.
Antibiotics (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786124

RESUMO

Neisseria gonorrhoeae has developed resistance to every antibiotic currently approved for the treatment of gonorrhea, prompting the development of new therapies. The phenoxazine dye resazurin exhibits robust antimicrobial activity against N. gonorrhoeae in vitro but fails to limit vaginal colonization by N. gonorrhoeae in a mouse model. The lack of in vivo efficacy may be due to oxygen limitation as in vitro susceptibility assays with resazurin are conducted under atmospheric oxygen while a microaerophilic environment is present in the vagina. Here, we utilized broth microdilution assays to determine the susceptibility of N. gonorrhoeae to resazurin under low and atmospheric oxygen conditions. The minimal inhibitory concentration of resazurin for multiple N. gonorrhoeae clinical isolates was significantly higher under low oxygen. This effect was specific to resazurin as N. gonorrhoeae was equally susceptible to other antibiotics under low and atmospheric oxygen conditions. The reduced susceptibility of N. gonorrhoeae to resazurin under low oxygen was largely attributed to reduced oxidative stress, as the addition of antioxidants under atmospheric oxygen mimicked the reduced susceptibility to resazurin observed under low oxygen. Together, these data suggest oxygen concentration is an important factor to consider when evaluating the efficacy of new antibiotics against N. gonorrhoeae in vitro.

7.
Environ Toxicol Pharmacol ; 108: 104471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763438

RESUMO

In the study on Oreochromis niloticus, singular oral gavage of florfenicol (FFC) at 15 mg/kg biomass/day was conducted, mimicking approved aquaculture dosing. Samples of plasma, bile, muscle, intestine, skin, liver, kidney, gill, and brain tissues were collected at 0, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, and 128 hours (h) after oral gavage. LC-MS/MS analysis revealed FFC concentrations peaked at 12.15 µg/mL in plasma and 77.92 µg/mL in bile, both at 24 hours. Elimination half-lives were 28.17 h (plasma) and 26.88 h (bile). The residues of FFC ranked muscle>intestine>skin>liver>kidney>gill. In contrast, the residues of florfenicol amine (FFA) ranked kidney>skin>liver>muscle>gill>intestine>brain, particularly notable in tropical summer conditions. The minimum inhibitory concentration of FFC was elucidated against several bacterial pathogens revealing its superior efficacy. Results highlight bile's crucial role in FFC elimination. Further investigation, especially during winter when fish susceptibility to infections rises, is warranted.


Assuntos
Antibacterianos , Ciclídeos , Resíduos de Drogas , Tianfenicol , Animais , Tianfenicol/análogos & derivados , Tianfenicol/farmacocinética , Tianfenicol/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Ciclídeos/metabolismo , Bile/química , Bile/metabolismo , Administração Oral , Rim/metabolismo , Testes de Sensibilidade Microbiana , Distribuição Tecidual , Fígado/metabolismo , Espectrometria de Massas em Tandem , Meia-Vida
8.
Helicobacter ; 29(3): e13091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780150

RESUMO

BACKGROUND: Helicobacter pylori eradication failure influences its antibiotic resistance. AIMS: This study aimed to evaluate the effect of previous treatment failures on it, including the changes in the antibiotic resistance rates, minimal inhibitory concentration (MIC) distributions, and resistance patterns. MATERIALS AND METHODS: This single-center retrospective study included 860 primary isolates and 247 secondary isolates. Antibiotic susceptibility testing was performed for amoxicillin, metronidazole, clarithromycin, levofloxacin, furazolidone, tetracycline, and rifampicin. The demographic data and detailed regimens were collected. RESULTS: The primary resistance rates to amoxicillin, metronidazole, clarithromycin, levofloxacin, tetracycline, rifampin, and furazolidone were 5.93%, 83.84%, 28.82%, 26.28%, 0.35%, 1.16%, and 0%, while secondary were 25.10%, 92.31%, 79.76%, 63.16%, 1.06%, 3.19%, and 0%, respectively. The resistance rates to amoxicillin, metronidazole, clarithromycin, and levofloxacin increased significantly with the number of treatment failures accumulated, and showed a linear trend. The proportion of primary and secondary multidrug-resistant (MDR) isolates were 17.79% and 63.16%, respectively. The MIC values of amoxicillin, clarithromycin, and levofloxacin were elevated significantly with medication courses increased. CONCLUSION: The prevalence of amoxicillin, clarithromycin, levofloxacin, and metronidazole resistance would increase rapidly following first-line treatment failure, as well as the MIC values of them. Clinicians should pay great attention to the first-line treatment to cure H. pylori infection successfully.


Assuntos
Antibacterianos , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Falha de Tratamento , Humanos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Farmacorresistência Bacteriana , Adulto Jovem , Adolescente , Idoso de 80 Anos ou mais
9.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38544327

RESUMO

AIMS: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections poses a significant threat to human health, necessitating urgent development of new antimicrobial agents. Silver nanoparticles (AgNPs), which are among the most widely used engineered nanomaterials, have been extensively studied. However, the impact of AgNPs on CRKP and the potential for drug resistance development remain inadequately explored. METHODS AND RESULTS: In this study, broth dilution method was used to determine the minimum inhibitory concentration (MIC) was determined using the broth dilution method. Results indicated MIC values of 93.1 ± 193.3 µg ml-1 for AgNPs, 2.3 ± 5.1 µg ml-1 for AgNO3, and 25.1 ± 48.3 µg ml-1 for imipenem (IMI). The combined inhibitory effect of AgNPs and IMI on CRKP was assessed using the checkerboard method. Moreover, after 6-20 generations of continuous culture, the MIC value of AgNPs increased 2-fold. Compared to IMI, resistance of Kl. pneumoniae to AgNPs developed more slowly, with a higher fold increase in MIC observed after 20 generations. Whole-genome sequencing revealed four nonsynonymous single nucleotide polymorphism mutations in CRKP after 20 generations of AgNP treatment. CONCLUSION: We have demonstrated that AgNPs significantly inhibit CRKP isolates and enhance the antibacterial activity of imipenem against Kl. pneumoniae. Although the development of AgNP resistance is gradual, continued efforts are necessary for monitoring and studying the mechanisms of AgNP resistance.


Assuntos
Antibacterianos , Carbapenêmicos , Imipenem , Klebsiella pneumoniae , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Imipenem/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Prata/farmacologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Humanos , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana/genética
10.
Vet Med Sci ; 10(3): e1385, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547160

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an important veterinary pathogen. In general, only a few antimicrobials show in vitro activity against MRSP isolates. OBJECTIVES: The objective of this study was to determine the in vitro activity of selected antimicrobials, including last-choice drugs, against clinical MRSP isolates of canine origin. The activity of 10 selected agents was evaluated against 41 clinical MRSP isolates. METHODS: The disk diffusion method and minimal inhibitory concentration values were used for antimicrobial susceptibility testing (AST). The guidelines for staphylococci of canine or human origin were employed for the interpretation of the results. RESULTS: Among the examined MRSP isolates, resistance to enrofloxacin and clindamycin was the most prevalent (n = 40; 97.6%). Resistance to doxycycline and gentamicin was observed in 83.0% (n = 34) and 68.3% (n = 28) of the isolates, respectively. Single isolates were resistant to chloramphenicol (n = 5; 12.2%) and rifampicin (n = 3; 7.3%), whereas all showed susceptibility to amikacin, vancomycin, mupirocin and linezolid. Predominantly, the results of AST obtained by both methods were consistent. Some discrepancies were observed for gentamicin; however, clinical breakpoints for staphylococci of human origin were used. CONCLUSIONS: Amikacin and chloramphenicol constitute potential treatment options in infections caused by MRSP and may be included in extended susceptibility testing in our geographical region. The determination of clinical breakpoints for some antimicrobials not incorporated in the recommendations should be a high priority in the veterinary diagnostics.


Assuntos
Anti-Infecciosos , Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus , Animais , Cães , Humanos , Resistência a Meticilina , Infecções Estafilocócicas/veterinária , Amicacina , Polônia/epidemiologia , Anti-Infecciosos/farmacologia , Gentamicinas/farmacologia , Cloranfenicol , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia
11.
Microorganisms ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399819

RESUMO

Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence factors of A. hydrophila AS 1.1801 and its antibacterial mechanism was elucidated. The minimum inhibitory concentration (MIC) of oridonin against A. hydrophila AS 1.1801 was 100 µg/mL. Oridonin at inhibitory concentrations could significantly increase the electrical conductivity in the supernatant and escalate nucleic acid leakage (p < 0.01). This effect was concomitant with observed distortions in bacterial cells, the formation of cytoplasmic cavities, cellular damage, and pronounced inhibition of protein and nucleic acid synthesis. Additionally, oridonin at inhibitory levels exhibited a noteworthy suppressive impact on A. hydrophila AS 1.1801 across biofilm formation, motility, hemolytic activity, lipase activity, and protease activity (p < 0.05), demonstrating a dose-dependent enhancement. qRT-PCR analysis showed that the gene expression of luxR, qseB and omp were significantly downregulated after oridonin treatment in A. hydrophila AS 1.1801 (p < 0.05). Our results indicated that oridonin possessed significant antibacterial and anti-virulence effects on A. hydrophila AS 1.1801.

12.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339095

RESUMO

The presence of sub-minimal inhibitory concentration (sub-MIC) antibiotics in our environment is widespread, and their ability to induce antibiotic resistance is inevitable. Acinetobacter baumannii, a pathogen known for its strong ability to acquire antibiotic resistance, has recently shown clinical resistance to the last-line antibiotic tigecycline. To unravel the complex mechanism of A. baumannii drug resistance, we subjected tigecycline-susceptible, -intermediate, and -mildly-resistant strains to successive increases in sub-MIC tigecycline and ultimately obtained tigecycline-resistant strains. The proteome of both key intermediate and final strains during the selection process was analyzed using nanoLC-MS/MS. Among the more than 2600 proteins detected in all strains, we found that RND efflux pump AdeABC was associated with the adaptability of A. baumannii to tigecycline under sub-MIC pressure. qRT-PCR analysis also revealed higher expression of AdeAB in strains that can quickly acquire tigecycline resistance compared with strains that displayed lower adaptability. To validate our findings, we added an efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), to the medium and observed its ability to inhibit tigecycline resistance in A. baumannii strains with quick adaptability. This study contributes to a better understanding of the mechanisms underlying tigecycline resistance in A. baumannii under sub-MIC pressure.


Assuntos
Acinetobacter baumannii , Tigeciclina/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla
13.
Anal Chim Acta ; 1287: 342033, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182334

RESUMO

The abuse of antibiotics has become a global public safety issue, leading to the development of antimicrobial resistance (AMR). The development of antimicrobial susceptibility testing (AST) is crucial in reducing the growth of AMR. However, traditional AST methods are time-consuming (e.g., 24-72 h), labor-intensive, and costly. Here, we propose a controlled-diffusion centrifugal microfluidic platform (CCM) for rapid AST to obtain highly precise minimum inhibitory concentration (MIC) values. Antibiotic concentration gradients are generated by controlled moving and diffusing of antibiotic and buffer solution along the main microchannel within 3 min. The solution and bacterial suspension are then injected into the outermost reaction chamber by simple centrifugation. The CCM successfully determined the MIC for three commonly used antibiotics in clinical settings within 4-9 h. To further enhance practicality, reduce costs, and meet point-of-care testing demands, we have developed an integrated mobile detection platform for automated MIC value acquisition. The proposed CCM is a simple, low-cost, and portable method for rapid AST with broad clinical and in vitro applications.


Assuntos
Antibacterianos , Microfluídica , Antibacterianos/farmacologia , Centrifugação , Difusão , Testes de Sensibilidade Microbiana
14.
J Glob Antimicrob Resist ; 36: 230-236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072239

RESUMO

OBJECTIVES: The characteristic and performance of Broth microdilution (BMD) plates for drug susceptibility of Mycobacterium tuberculosis have not been systematically evaluated in China. This study was designed to review the key information and assess the performance of BMD plates by analysis of proficiency testing results. METHODS: We retrospectively analysed the proficiency testing results of phenotypic drug susceptibility testing (PT-DST) of 45 laboratories using BMD plates in China in 2021. Critical information, such as drug layout, concentration range of each drug, plate storage conditions and duration, operating procedures, and interpretation criteria for binary results were compared. The performance was also analysed. RESULTS: Eight types of BMD plates produced by four manufactures were reported. The drug layout, number of drugs on plates, and concentration range varied a lot between different plates. The total sensitivity and specificity of BMD plates for drug susceptibility of Mycobacterium tuberculosis to ten drugs (isoniazid (INH), rifampin (RIF), kanamycin (KAM), amikacin (AM), levofloxacin (LFX), moxifloxacin (MFX), bedaquiline (BDQ), linezolid (LZD), clofazimine (CFZ), and delamanid (DLM)) were 93.9% (95% CI 92.-94.9) and 99.1% (95% CI 98.8-99.3), respectively. The lowest sensitivity was 84.8% (95% CI 80.3-88.4) for LFX and 86.4% (95% CI 82.5-89.6) for MFX, or 87.5% (95% CI 84.2-90.2) for Y1 plate and 87.9% (95% CI 83.5-91.1) for T plate. The lowest specificity was 94.4% (95% CI 91.4-96.4) for DLM, or 97.9% (95% CI 96.8-98.7) for B3 plate. CONCLUSION: Commercial BMD plates in China showed varied drug layouts and operational procedures, indicating the urgency of standardization. The lower performance for some drugs showed the low quality of the plates utilized or lack of proficiency of lab staffs in operating and interpreting results.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Rifampina
15.
Biochim Biophys Acta Biomembr ; 1866(2): 184255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995845

RESUMO

Cell penetrating peptides (CPP) with their intrinsic ability to penetrate plasma membranes facilitate intracellular uptake of various macromolecules. Although a substantial number of CPPs have been reported over the last three decades, the number is still inadequate when compared to the theoretically feasible peptides with similar physicochemical composition. Marine organisms, due to their hostile environment, are an immense source of several high-valued therapeutically relevant peptides. Various marine derived antibacterial, antimycotic and anticancer peptides have demonstrated improved activity in comparison to peptides of terrestrial origin. While a significant number of marine bioactive peptides exist, cell penetrating peptides from marine organisms remain unravelled. In this study, we report Engraulisin from Engraulis japonicus, a computationally derived novel cell penetrating peptide of marine origin. Engraulisin manifest successful uptake in mammalian cells at 5 µM concentration with negligible cytotoxicity observed through MTT assay. Analysis of its cellular uptake mechanism revealed significant inhibition at 4 °C suggesting endocytosis as the major route of cellular entry. Interestingly, the novel peptide also demonstrated selective antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Additionally, molecular dynamics simulation with POPC and POPG bilayer system unveiled significance of positively charged residues in forming a stable membrane interaction. Engraulisin represents a novel marine-derived cell penetrating peptide which can be explored for cellular delivery of pharmaceutically relevant molecules.


Assuntos
Peptídeos Penetradores de Células , Staphylococcus aureus Resistente à Meticilina , Animais , Peptídeos Penetradores de Células/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Preparações Farmacêuticas/metabolismo , Membrana Celular/metabolismo , Antibacterianos/química , Mamíferos
16.
Food Chem ; 438: 137983, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37989025

RESUMO

Simple and sensitive discrimination of multiple bacteria and antimicrobial susceptibility test (AST) are significant for food safety, clinical diagnosis and treatment. Herein, based on different metabolic ability of bacteria on glucose, we presented a colorimetric sensor array for point-of-care testing (POCT) of multiple bacteria with methyl red (MER), bromothymol blue (BTB) and bromocresol green (BCG) as probes. Different bacteria resulted in different color changes of three probes, which was converted to RGB (Red (R)/Green (G)/Blue (B)) signals by the color recognizer APP loaded on smartphone. The sensor array performed differentiation of eleven species of bacteria, achieving the quantitative analysis of individual bacteria in tap water and differentiation of bacterial mixtures. Interestingly, the sensor array can be used for AST and evaluating minimal inhibitory concentration (MIC) of antibiotics to bacteria. The research provided meaningful guidance for distinguishing multiple bacteria and evaluating MIC, presenting great potential in practical application.


Assuntos
Colorimetria , Sistemas Automatizados de Assistência Junto ao Leito , Colorimetria/métodos , Antibacterianos/farmacologia , Glucose/análise , Bactérias
17.
Proc Natl Acad Sci U S A ; 120(51): e2312651120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096408

RESUMO

Antibiotic effectiveness depends on a variety of factors. While many mechanistic details of antibiotic action are known, the connection between death rate and bacterial physiology is poorly understood. A common observation is that death rate in antibiotics rises linearly with growth rate; however, it remains unclear how other factors, such as environmental conditions and whole-cell physiological properties, affect bactericidal activity. To address this, we developed a high-throughput assay to precisely measure antibiotic-mediated death. We found that death rate is linear in growth rate, but the slope depends on environmental conditions. Growth under stress lowers death rate compared to nonstressed environments with similar growth rate. To understand stress's role, we developed a mathematical model of bacterial death based on resource allocation that includes a stress-response sector; we identify this sector using RNA-seq. Our model accurately predicts the minimal inhibitory concentration (MIC) with zero free parameters across a wide range of growth conditions. The model also quantitatively predicts death and MIC when sectors are experimentally modulated using cyclic adenosine monophosphate (cAMP), including protection from death at very low cAMP levels. The present study shows that different conditions with equal growth rate can have different death rates and establishes a quantitative relation between growth, death, and MIC that suggests approaches to improve antibiotic efficacy.


Assuntos
Antibacterianos , Fenômenos Fisiológicos Bacterianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Testes de Sensibilidade Microbiana , Modelos Teóricos
18.
Antibiotics (Basel) ; 12(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136711

RESUMO

The aim of this study was to evaluate the antibacterial activity of nanoemulsions of Baccharis dracunculifolia essential oil. The volatile compounds of the essential oil were identified using gas chromatography-mass spectrometry. The properties of the nanoemulsions (droplet size, polydispersity index, pH, and electrical conductivity) were determined. The antibacterial activities of the essential oil and its nanoemulsions were evaluated using MIC, MBC, and disk diffusion. The microorganisms used were: Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, Streptococcus mutans ATCC 25175, and Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC BAA-1706, Salmonella enterica ATCC 14028, and Escherichia coli ATCC 25922). The major volatile compounds of the B. dracunculifolia essential oil were limonene (19.36%), (E)-nerolidol (12.75%), bicyclogermacrene (10.76%), and ß-pinene (9.60%). The nanoemulsions had a mean droplet size between 13.14 and 56.84 nm. The nanoemulsions presented lower and statistically significant MIC values compared to the essential oil, indicating enhancement of the bacteriostatic action. The disk diffusion method showed that both the nanoemulsions and the essential oil presented inhibition zones only for Gram-positive bacteria, while there were no results against Gram-negative bacteria, indicating that B. dracunculifolia essential oil has a better antimicrobial effect on Gram-positive microorganisms.

19.
Stat Methods Med Res ; 32(12): 2423-2439, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37920984

RESUMO

Antimicrobial resistance is becoming a major threat to public health throughout the world. Researchers are attempting to contrast it by developing both new antibiotics and patient-specific treatments. In the second case, whole-genome sequencing has had a huge impact in two ways: first, it is becoming cheaper and faster to perform whole-genome sequencing, and this makes it competitive with respect to standard phenotypic tests; second, it is possible to statistically associate the phenotypic patterns of resistance to specific mutations in the genome. Therefore, it is now possible to develop catalogues of genomic variants associated with resistance to specific antibiotics, in order to improve prediction of resistance and suggest treatments. It is essential to have robust methods for identifying mutations associated to resistance and continuously updating the available catalogues. This work proposes a general method to study minimal inhibitory concentration distributions and to identify clusters of strains showing different levels of resistance to antimicrobials. Once the clusters are identified and strains allocated to each of them, it is possible to perform regression method to identify with high statistical power the mutations associated with resistance. The method is applied to a new 96-well microtiter plate used for testing Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Teorema de Bayes , Mutação , Análise por Conglomerados
20.
Cells ; 12(22)2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37998390

RESUMO

Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Candida/genética , Fluconazol/farmacologia , Equinocandinas/farmacologia , Azóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA