Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Neurosurg Rev ; 47(1): 327, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004685

RESUMO

With the current artificial intelligence (AI) boom, new innovative and accessible applications requiring minimal computer science expertise have been developed for discipline specific and mainstream purposes. Apple Intelligence, a new AI model developed by Apple, aims to enhance user experiences with new functionalities across many of its product offerings. Although designed for the everyday user, many of these advances have potential applications in neurosurgery. These include functionalities for writing, image generation, and upgraded integrations to the voice command assistant Siri. Future integrations may also include other Apple products such as the vision pro for preoperative and intraoperative applications. Considering the popularity of Apple products, particularly the iPhone, it is important to appraise this new technology and how it can be leveraged to enhance patient care, improve neurosurgical education, and facilitate more efficiency for the neurosurgeon.


Assuntos
Inteligência Artificial , Neurocirurgia , Procedimentos Neurocirúrgicos , Humanos , Procedimentos Neurocirúrgicos/métodos
2.
BMC Nurs ; 23(1): 468, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982463

RESUMO

BACKGROUND: Timely and effective intervention within the 'golden hour'-the critical first 90 min after the symptom onset-is crucial for initiating life-saving treatment and reducing mortality in acute coronary syndrome (ACS). This highlights the need for nursing students to be proficient in ACS care, emphasizing the importance of preparatory training. This study enhanced traditional simulation methods by integrating a mixed reality (MR) preparation step, offering a more immersive learning experience. We aimed to evaluate the effectiveness of integrating MR preparation into ACS simulation education, focusing on enhancements in knowledge, self-confidence in learning, and self-efficacy in learning. Additionally, we examined performance, practice immersion, and satisfaction to comprehensively evaluate the MR application. METHODS: One-group pretest-posttest design was implemented in a convenience sample of thirty-nine senior nursing students from a university in South Korea in August 2022. We developed a simulation program integrating MR preparation into ACS simulation (IMRP-ACSS), which was validated through expert review for content validity. The students participated in the simulation program over six hours across two days, including a 40-minute individual session of MR-based simulation preparation using head-mounted displays (the HoloLens 2). Individual changes in knowledge, self-confidence in learning, and self-efficacy in learning evaluated by the survey were analyzed using paired t-tests. Additionally, group performance assessed using the checklist was analyzed. Immersion and satisfaction were measured with a tool and a 10-point Likert scale, respectively. RESULTS: Individually, participants demonstrated significantly increased knowledge (t = 11.87, p < .001), self-confidence in learning (t = 7.17, p < .001), and self-efficacy in learning (t = 4.70, p < .001) post-education. Group performance yielded a mean score of 56.43/70 ± 7.45. Groups scored higher in electrocardiogram interpretation, patient safety, and heparin administration. Participants reported a practice immersion level of 37.82/50 ± 9.13 and expressed satisfaction with the program, achieving an average score of 8.85/10 ± 1.35. CONCLUSION: Integrating MR preparation into ACS simulation enhanced nursing students' knowledge, self-confidence in learning, and self-efficacy in ACS care, providing a replicable and immersive learning experience. This method is an effective addition to nursing education, preparing students through comprehensive, technology-enhanced training.

3.
Appl Neuropsychol Adult ; : 1-4, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976768

RESUMO

The integration of virtual, mixed, and augmented reality technologies in cognitive neuroscience and neuropsychology represents a transformative frontier. In this Commentary, we conducted a meta-analysis of studies that explored the impact of Virtual Reality (VR), Mixed Reality (MR), and Augmented Reality (AR) on cognitive neuroscience and neuropsychology. Our review highlights the versatile applications of VR, ranging from spatial cognition assessments to rehabilitation for Traumatic Brain Injury. We found that MR and AR offer innovative avenues for cognitive training, particularly in memory-related disorders. The applications extend to addressing social cognition disorders and serving as therapeutic interventions for mental health issues. Collaborative efforts between neuroscientists and technology developers are crucial, with reinforcement learning and neuroimaging studies enhancing the potential for improved outcomes. Ethical considerations, including informed consent, privacy, and accessibility, demand careful attention. Our review identified common aspects of the meta-analysis, including the potential of VR technologies in cognitive neuroscience and neuropsychology, the use of MR and AR in memory research, and the role of VR in neurorehabilitation and therapy.

4.
Int J Cardiol ; : 132330, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964558

RESUMO

BACKGROUND: Using three-dimensional (3D) modalities for optimal pre-procedure planning in transcatheter aortic valve replacement (TAVR) is critical for procedural success. However, current methods rely on visualizing images on a two-dimensional screen, using shading and colors to create the illusion of 3D, potentially impeding the accurate comprehension of the actual anatomy structures. In contrast, a new Mixed Reality (MxR) based software enables accurate 3D visualization, imaging manipulation, and quantification of measurements. AIMS: The study aims to evaluate the feasibility, reproducibility, and accuracy of dimensions of the aortic valve complex as measured with a new holographic MxR software (ARTICOR®, Artiness srl, Milano, Italy) compared to a widely used software for pre-operative sizing and planning (3mensio Medical Imaging BV, Bilthoven, The Netherlands) . METHODS: This retrospective, observational, double-center study enrolled 100 patients with severe aortic stenosis who underwent cardiac computed tomography (CCT) before TAVR. The CCT datasets of volumetric aortic valve images were analyzed using 3Mensio and newly introduced MxR-based software. RESULTS: 98% of the CCT datasets were successfully converted into holographic models. A higher level of agreement between the two software systems was observed for linear metrics (short, long, and average diameter). In comparison, agreement was lower for area, perimeter, and annulus-to-coronary ostia distance measurements. Notably, the annulus area, annular perimeter, LVOT area, and LVOT perimeter were significantly and consistently smaller with the MxR-based software compared to the 3Mensio. Excellent interobserver reliability was demonstrated for most measurements, especially for direct linear measurements. CONCLUSIONS: Linear Measurements of the aortic valve complex using MxR-based software are reproducible compared to the standard CCT dataset analyzed with 3Mensio. MxR-based software could represent an accurate tool for the pre-procedural planning of TAVR.

5.
IJU Case Rep ; 7(4): 320-323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966773

RESUMO

Introduction: Small tumors may be difficult to identify visually and require preoperative effort to locate. Recent advancements in mixed reality technology have improved surgical accuracy in various departments. Here, we present the application of mixed reality-assisted surgery and a guiding marker in the case of small retroperitoneal metastasis of uterine cancer. Case presentation: A 67-year-old female with a history of uterine cancer had a retroperitoneal metastasis in the lateroconal fascia near the right diaphragm, measuring 2 cm and infiltrating the peritoneum. We performed precise surgical planning using the preoperative mixed reality software "Holoeyes" on a head-mounted display called HoloLens2. Novel techniques, including ultrasonography-guided placement of a guiding marker and strategic port-site placement facilitated by HoloLens2, ensured accurate tumor identification and laparoscopic resection with minimal blood loss and no intraoperative complications. Conclusion: The use of mixed reality-assisted surgery and a guiding marker effectively enhanced the precision of retroperitoneal tumor resection.

6.
Clin Neurol Neurosurg ; 244: 108412, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986364

RESUMO

BACKGROUND: Catheter shaping is vital in cerebral aneurysm coil embolization; however, understanding three-dimensional (3D) vascular structures on two-dimensional screens is challenging. Although 3D-printed vascular models are helpful, they demand time, effort, and sterility. This study explores whether mixed-reality (MR) devices displaying 3D computer graphics (3D-CG) can address these issues. METHODS: This study focused on magnetic resonance imaging (MRI) of seven cases of cerebral aneurysms. Head-mounted display (HMD) and spatial reality display (SRD) MR devices were used, and applications for 3D-CG display at a 1:1 scale and a 3D-CG control panel were developed. Catheters shaped using a 3D printer, HMD, and SRD were inserted into hollow models to assess their accessibility and positioning. RESULTS: The concordance rate of the 3D printer and HMD groups in terms of accessibility to the aneurysm was 71.4 %, while that of the 3D printer and SRD group was 85.7 %, and that of the HMD and SRD group was 85.7 %. The concordance rates of positioning in the 3D printer and HMD groups, 3D printer and SRD groups, and HMD and SRD groups were 85.7 %, 85.7 %, and 100 %, respectively. CONCLUSIONS: MR devices facilitate catheter shaping in cerebral aneurysm coil embolization and offer a time-efficient, precise, and sterile alternative to traditional 3D printing methods.

7.
Cortex ; 177: 209-223, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38875735

RESUMO

The sense of a bodily self is thought to depend on adaptive weighting and integration of bodily afferents and prior beliefs. While the physical body changes in shape, size, and functionality across the lifespan, the sense of body ownership remains relatively stable. Yet, little is known about how multimodal integration underlying such sense of ownership is altered in ontogenetic periods of substantial physical changes. We aimed to study this link for the motor and the tactile domain in a mixed-realty paradigm where participants ranging from 7 to 80 years old saw their own body with temporally mismatching multimodal signals. Participants were either stroked on their hand or moved it, while they saw it in multiple trials with different visual delays. For each trial, they judged the visuo-motor/tactile synchrony and rated the sense of ownership for the seen hand. Visual dependence and proprioceptive acuity were additionally assessed. The results show that across the lifespan body ownership decreases with increasing temporal multisensory mismatch, both in the tactile and the motor domain. We found an increased sense of ownership with increasing age independent of delay and modality. Delay sensitivity during multisensory conflicts was not consistently related to age. No effects of age were found on visual dependence or proprioceptive accuracy. The results are at least partly in line with an enhanced weighting of top-down and a reduced weighting of bottom-up signals for the momentary sense of bodily self with increasing age.

8.
Surg Innov ; : 15533506241262946, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905568

RESUMO

Plastic surgeons routinely use 3D-models in their clinical practice, from 3D-photography and surface imaging to 3D-segmentations from radiological scans. However, these models continue to be viewed on flattened 2D screens that do not enable an intuitive understanding of 3D-relationships and cause challenges regarding collaboration with colleagues. The Metaverse has been proposed as a new age of applications building on modern Mixed Reality headset technology that allows remote collaboration on virtual 3D-models in a shared physical-virtual space in real-time. We demonstrate the first use of the Metaverse in the context of reconstructive surgery, focusing on preoperative planning discussions and trainee education. Using a HoloLens headset with the Microsoft Mesh application, we performed planning sessions for 4 DIEP-flaps in our reconstructive metaverse on virtual patient-models segmented from routine CT angiography. In these sessions, surgeons discuss perforator anatomy and perforator selection strategies whilst comprehensively assessing the respective models. We demonstrate the workflow for a one-on-one interaction between an attending surgeon and a trainee in a video featuring both viewpoints as seen through the headset. We believe the Metaverse will provide novel opportunities to use the 3D-models that are already created in everyday plastic surgery practice in a more collaborative, immersive, accessible, and educational manner.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38908464

RESUMO

BACKGROUND: Accurate insertion of the glenoid guide pin in shoulder arthroplasty (RSA) is important for obtaining optimized glenoid component position and orientation. The objective of this study was to evaluate and compare the accuracy of three glenoid guide pin insertion techniques: 1) traditional software planning using freehand guide pin insertion (freehand), 2) guide pin insertion utilizing patient-specific instrumentation (PSI), and 3) using a mixed reality navigation (MR-NAV) system. METHODS: Twenty (20) computer tomography (CT) scans were obtained from patients exhibiting glenoid erosion patterns according to the Walch and Favard classifications. Cases were planned using validated three-dimensional (3D) preoperative planning software. The CT data was then used to 3D print triplicate plastic models of each glenoid to evaluate the three guide pin insertion techniques. The first technique employed traditional software planning with freehand guide pin insertion. The second method used preoperatively planned PSI guides, while the third utilized a MR-NAV system, which provided real-time holographic guidance during guide pin insertion. Once all guide pins had been inserted into the models, an independent optical tracking system and custom digitization device was used to quantify the position and orientation of each guide pin relative to the glenoid. The outcomes for this study included the absolute mean error in guide pin inclination, version, and entry point relative to the preoperative plan. The absolute Total Global Error was also assessed, which was defined as the sum of the absolute guide pin orientation and position error relative to the preoperative plan. RESULTS: No statistically significant differences between MR-NAV and PSI were found for the inclination error (2±1° versus 2±1°; P=0.056), version error (1±1° versus 1±1°; P=1.000), and Total Global Error (5±1 [mm+deg] versus 5±1 [mm+deg], P=1.000), respectively. The freehand technique produced significantly greater error than MR-NAV and PSI for inclination (5±3°, P≤0.017), version (4±3°, P≤0.032) and Total Global Error (8±3 [mm+deg], P<0.001). No statistically significant differences in the entry point error were observed between all guide pin insertion methods (P≥0.058). DISCUSSION: These results demonstrate that the precision and accuracy of MR-NAV is comparable to PSI and superior to a freehand technique for glenoid guide pin insertion in-vitro. Further study is needed to compare the accuracy of these techniques intra-operatively, in addition to assessing a potential learning curve between surgeons of varying experience with the MR-NAV system.

10.
JACC Adv ; 3(3): 100839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38938839

RESUMO

Background: Augmented reality (AR) guidance holds potential to improve transcatheter interventions by enabling visualization of and interaction with patient-specific 3-dimensional virtual content. Positioning of cerebral embolic protection devices (CEP) during transcatheter aortic valve replacement (TAVR) increases patient exposure to radiation and iodinated contrast, and increases procedure time. AR may enhance procedural guidance and facilitate a safer intervention. Objectives: The purpose of this study was to develop and test a novel AR guidance system with a custom user interface that displays virtual, patient-specific 3-dimensional anatomic models, and assess its intraprocedural impact during CEP placement in TAVR. Methods: Patients undergoing CEP during TAVR were prospectively enrolled and assigned to either AR guidance or control groups. Primary endpoints were contrast volume used prior to filter placement, times to filter placement, and fluoroscopy time. Postprocedure questionnaires were administered to assess intraprocedural physician experience with AR guidance. Results: A total of 24 patients presenting for TAVR were enrolled in the study (12 with AR guidance and 12 controls). AR guidance eliminated the need for aortic arch angiograms prior to device placement thus reducing contrast volume (0 mL vs 15 mL, P < 0.0001). There was no significant difference in the time required for filter placement or fluoroscopy time. Postprocedure questionnaires indicated that AR guidance increased confidence in wiring of the aortic arch and facilitated easier device placement. Conclusions: We developed a novel AR guidance system that eliminated the need for additional intraprocedural angiograms prior to device placement without any significant difference in time to intervention and offered a subjective improvement in performance of the intervention.

11.
J Am Coll Radiol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866067

RESUMO

Medical Extended Reality (MXR), encompassing augmented reality (AR), virtual reality (VR), and mixed reality (MR), presents a novel paradigm in radiology training by offering immersive, interactive, and realistic learning experiences in healthcare. While traditional educational tools in the field of radiology are essential, it is necessary to capitalize on the innovative and emerging educational applications of XR technologies. At the most basic level of learning anatomy, XR has been extensively utilized with an emphasis on its superiority over conventional learning methods, especially in spatial understanding and recall. For imaging interpretation, XR has fostered the concepts of virtual reading rooms by enabling collaborative learning environments and enhancing image analysis and understanding. Moreover, image-guided interventions in interventional radiology have witnessed an uptick in XR utilization, illustrating its effectiveness in procedural training and skill acquisition for medical students and residents in a safe and risk-free environment. However, there remain several challenges and limitations for XR in radiology education, including technological, economic, ergonomic, and integration into existing curricula. This review explores the transformative potential of MXR in radiology education and training along with insights on the future of XR in radiology education, forecasting advancements in immersive simulations, AI integration for personalized learning, and the potential of cloud-based XR platforms for remote and collaborative training. In summation, MXR's burgeoning role in reshaping radiology education offers a safer, scalable, and more efficient training model that aligns with the dynamic healthcare landscape.

12.
EFORT Open Rev ; 9(6): 517-527, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828974

RESUMO

Accurate component placement in shoulder arthroplasty is crucial for avoiding complications, achieving superior biomechanical performance and optimizing functional outcomes. Shoulder and elbow surgeons have explored various methods to improve surgical understanding and precise execution including preoperative planning with 3D computed tomography (CT), patient-specific instrumentation (PSI), intraoperative navigation, and mixed reality (MR). 3D preoperative planning facilitated by CT scans and advanced software, enhances surgical precision, influences decision-making for implant types and approaches, reduces errors in guide pin placement, and contributes to cost-effectiveness. Navigation demonstrates benefits in reducing malpositioning, optimizing baseplate stability, improving humeral cut, and potentially conserving bone stock, although challenges such as varied operating times and costs warrant further investigation. The personalized patient care and enhanced operational efficiency associated with PSI are not only attractive for achieving desired component positions but also hold promise for improved outcomes in complex cases involving glenoid bone loss. Augmented reality (AR) and virtual reality (VR) technologies play a pivotal role in reshaping shoulder arthroplasty. They offer benefits in preoperative planning, intraoperative guidance, and interactive surgery. Studies demonstrate their effectiveness in AR-guided guidewire placement, providing real-time surgical advice during reverse total shoulder arthroplasty (RTSA). Additionally, these technologies show promise in orthopedic training, delivering superior realism and accelerating learning compared to conventional methods.

13.
BMC Med Educ ; 24(1): 701, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937764

RESUMO

BACKGROUND: Clinical teaching during encounters with real patients lies at the heart of medical education. Mixed reality (MR) using a Microsoft HoloLens 2 (HL2) offers the potential to address several challenges: including enabling remote learning; decreasing infection control risks; facilitating greater access to medical specialties; and enhancing learning by vertical integration of basic principles to clinical application. We aimed to assess the feasibility and usability of MR using the HL2 for teaching in a busy, tertiary referral university hospital. METHODS: This prospective observational study examined the use of the HL2 to facilitate a live two-way broadcast of a clinician-patient encounter, to remotely situated third and fourth year medical students. System Usability Scale (SUS) Scores were elicited from participating medical students, clinician, and technician. Feedback was also elicited from participating patients. A modified Evaluation of Technology-Enhanced Learning Materials: Learner Perceptions Questionnaire (mETELM) was completed by medical students and patients. RESULTS: This was a mixed methods prospective, observational study, undertaken in the Day of Surgery Assessment Unit. Forty-seven medical students participated. The mean SUS score for medical students was 71.4 (SD 15.4), clinician (SUS = 75) and technician (SUS = 70) indicating good usability. The mETELM Questionnaire using a 7-point Likert Scale demonstrated MR was perceived to be more beneficial than a PowerPoint presentation (Median = 7, Range 6-7). Opinion amongst the student cohort was divided as to whether the MR tutorial was as beneficial for learning as a live patient encounter would have been (Median = 5, Range 3-6). Students were positive about the prospect of incorporating of MR in future tutorials (Median = 7, Range 5-7). The patients' mETELM results indicate the HL2 did not affect communication with the clinician (Median = 7, Range 7-7). The MR tutorial was preferred to a format based on small group teaching at the bedside (Median = 6, Range 4-7). CONCLUSIONS: Our study findings indicate that MR teaching using the HL2 demonstrates good usability characteristics for providing education to medical students at least in a clinical setting and under conditions similar to those of our study. Also, it is feasible to deliver to remotely located students, although certain practical constraints apply including Wi-Fi and audio quality.


Assuntos
Estudos de Viabilidade , Estudantes de Medicina , Humanos , Estudos Prospectivos , Estudantes de Medicina/psicologia , Feminino , Masculino , Autorrelato , Educação de Graduação em Medicina/métodos , Adulto , Adulto Jovem , Realidade Aumentada , Educação a Distância , Inquéritos e Questionários
14.
ACS Nano ; 18(26): 17041-17052, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904995

RESUMO

Flexible tactile sensors show promise for artificial intelligence applications due to their biological adaptability and rapid signal perception. Triboelectric sensors enable active dynamic tactile sensing, while integrating static pressure sensing and real-time multichannel signal transmission is key for further development. Here, we propose an integrated structure combining a capacitive sensor for static spatiotemporal mapping and a triboelectric sensor for dynamic tactile recognition. A liquid metal-based flexible dual-mode triboelectric-capacitive-coupled tactile sensor (TCTS) array of 4 × 4 pixels achieves a spatial resolution of 7 mm, exhibiting a pressure detection limit of 0.8 Pa and a fast response of 6 ms. Furthermore, neuromorphic computing using the MXene-based synaptic transistor achieves 100% recognition accuracy of handwritten numbers/letters within 90 epochs based on dynamic triboelectric signals collected by the TCTS array, and cross-spatial information communication from the perceived multichannel tactile data is realized in the mixed reality space. The results illuminate considerable application possibilities of dual-mode tactile sensing technology in human-machine interfaces and advanced robotics.

15.
J Neurosurg ; : 1-10, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848587

RESUMO

OBJECTIVE: The overall aim of this study was to demonstrate the potential benefit of a novel mixed-reality-head-mounted display (MR-HMD) on the spatial orientation of surgeons. METHODS: In a prospective clinical investigation, the authors applied for the first time a new multicamera navigation technology in an operating room setting that allowed them to directly compare MR-HMD navigation to standard monitor navigation. In the study, which included 14 patients with nonruptured middle cerebral artery aneurysms, the authors investigated how intuitively and effectively surgical instruments could be guided in 5 different visual navigation conditions. RESULTS: The authors demonstrate that multicamera tracking can be reliably integrated in a clinical setting (usability score 1.12 ± 0.31). Moreover, the technology captures large volumes of the operating room, allowing the team to track and integrate different devices and instruments, including MR-HMDs. Directly comparing mixed-reality navigation to standard monitor navigation revealed a significantly improved intuition in mixed reality, leading to navigation times that were twice as fast (2.1×, p ≤ 0.01). Despite the enhanced speed, the same targeting accuracy (approximately 2.5 mm, freehand tool use) in comparison to monitor navigation could be observed. Intraoperative planning strategies with mixed reality clearly outperformed classic preoperative planning: surgeons scored the mixed-reality plan as the best trajectory in 63% of the cases (chance level 33%). CONCLUSIONS: The incorporation of mixed reality in neurosurgical operations marks a significant advancement in the field. The use of mixed reality in brain surgery enhances the spatial awareness of surgeons, enabling more instinctive and precise surgical interventions. This technological integration promises to refine the execution of complex procedures without compromising accuracy.

16.
Indian J Thorac Cardiovasc Surg ; 40(Suppl 1): 138-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827540

RESUMO

Introduction: Infections in cardiac implantable electronic devices (CIED) are increasing over time and associated with substantially mortality and healthcare costs. The best approach is the complete removal of the system by transvenous lead extraction (TLE). However, when leads are more than 10 years old, this technique requires considerable expertise and failures with the result of abandoned leads or serious complications may occur. The aim of this study is to describe our experience using virtual and mixed reality in the preoperative planning of complex cases. Patients and methods: Consecutive patients from a referral centre with CIED infections in which TLE was judged difficult. Synchronized computed tomography (CT) scan images were processed and transferred to a fully immersive virtual reality room and also to the operative room (mixed reality) for better guidance during the extracting procedure. Results: Ten patients (seven with local and three with systemic infections) were preoperative evaluated. Processed images and virtual reality showed intense adherences of the leads to the veins, right ventricle, and right atrium endocardium and between them that preclude a difficult extraction and required a carefully planning and sometimes a different technical approach. The anticipated difficulty was confirmed by the higher times of fluoroscopy. All leads were extracted and no complications were registered. Conclusions: Preoperative planning is essential for evaluation of TLE difficulty and prevention of unexpected situations. Virtual reality seems an estimable aid for operators in planning difficult cases and also an excellent tool for teaching. Supplementary information: The online version contains supplementary material available at 10.1007/s12055-023-01663-9.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38940681

RESUMO

AIM: The aim of this work is to present a new protocol for implant surgical planning which involves the combined use of artificial intelligence (AI) and mixed reality (MR). METHODS: This protocol involves the acquisition of three-dimensional (3D) patient data through intraoral scanning (IOS) and cone beam computed tomography (CBCT). These data are loaded into AI software which automatically segments and aligns the patient's 3D models. These 3D models are loaded into MR software and used for planning implant surgery through holography. The files are then exported and used to design surgical guides via open-source software, which are 3D printed and used to prepare the implant sites through static computer-assisted implant surgery (s-CAIS). The case is finalized prosthetically through a fully digital protocol. The accuracy of implant positioning is verified by comparing the planned position with the actual position of the implants after surgery. RESULTS: As a proof of principle, the present protocol seems to be to be reliable and efficient when used for planning simple cases of s-CAIS in partially edentulous patients. The clinician can plan the implants in an authentic 3D environment without using any radiology-guided surgery software. The precision of implant placement seems clinically acceptable, with minor deviations. CONCLUSIONS: The present study suggests that AI and MR technologies can be successfully used in s-CAIS for an authentic 3D planning. Further clinical studies are needed to validate this protocol.

18.
Laryngoscope ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924127

RESUMO

OBJECTIVES: Virtual reality (VR) and augmented reality (AR) are innovative technologies that have a wide range of potential applications in the health care industry. The aim of this study was to investigate the body of research on AR and VR applications in rhinology by performing a scoping review. DATA SOURCES: PubMed, Scopus, and Embase. REVIEW METHODS: According to PRISM-ScR guidelines, a scoping review of literature on the application of AR and/or VR in the context of Rhinology was conducted using PubMed, Scopus, and Embase. RESULTS: Forty-nine articles from 1996 to 2023 met the criteria for review. Five broad types of AR and/or VR applications were found: preoperative, intraoperative, training/education, feasibility, and technical. The subsequent clinical domains were recognized: craniovertebral surgery, nasal endoscopy, transsphenoidal surgery, skull base surgery, endoscopic sinus surgery, and sinonasal malignancies. CONCLUSION: AR and VR have comprehensive applications in Rhinology. AR for surgical navigation may have the most emerging potential in skull base surgery and endoscopic sinus surgery. VR can be utilized as an engaging training tool for surgeons and residents and as a distraction analgesia for patients undergoing office-based procedures. Additional research is essential to further understand the tangible effects of these technologies on measurable clinical results. Laryngoscope, 2024.

19.
BMC Med Educ ; 24(1): 498, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704522

RESUMO

BACKGROUND: Mixed reality offers potential educational advantages in the delivery of clinical teaching. Holographic artefacts can be rendered within a shared learning environment using devices such as the Microsoft HoloLens 2. In addition to facilitating remote access to clinical events, mixed reality may provide a means of sharing mental models, including the vertical and horizontal integration of curricular elements at the bedside. This study aimed to evaluate the feasibility of delivering clinical tutorials using the Microsoft HoloLens 2 and the learning efficacy achieved. METHODS: Following receipt of institutional ethical approval, tutorials on preoperative anaesthetic history taking and upper airway examination were facilitated by a tutor who wore the HoloLens device. The tutor interacted face to face with a patient and two-way audio-visual interaction was facilitated using the HoloLens 2 and Microsoft Teams with groups of students who were located in a separate tutorial room. Holographic functions were employed by the tutor. The tutor completed the System Usability Scale, the tutor, technical facilitator, patients, and students provided quantitative and qualitative feedback, and three students participated in semi-structured feedback interviews. Students completed pre- and post-tutorial, and end-of-year examinations on the tutorial topics. RESULTS: Twelve patients and 78 students participated across 12 separate tutorials. Five students did not complete the examinations and were excluded from efficacy calculations. Student feedback contained 90 positive comments, including the technology's ability to broadcast the tutor's point-of-vision, and 62 negative comments, where students noted issues with the audio-visual quality, and concerns that the tutorial was not as beneficial as traditional in-person clinical tutorials. The technology and tutorial structure were viewed favourably by the tutor, facilitator and patients. Significant improvement was observed between students' pre- and post-tutorial MCQ scores (mean 59.2% Vs 84.7%, p < 0.001). CONCLUSIONS: This study demonstrates the feasibility of using the HoloLens 2 to facilitate remote bedside tutorials which incorporate holographic learning artefacts. Students' examination performance supports substantial learning of the tutorial topics. The tutorial structure was agreeable to students, patients and tutor. Our results support the feasibility of offering effective clinical teaching and learning opportunities using the HoloLens 2. However, the technical limitations and costs of the device are significant, and further research is required to assess the effectiveness of this tutorial format against in-person tutorials before wider roll out of this technology can be recommended as a result of this study.


Assuntos
Estudantes de Medicina , Humanos , Masculino , Feminino , Instrução por Computador/métodos , Educação de Graduação em Medicina/métodos , Estudos de Viabilidade , Avaliação Educacional , Competência Clínica , Adulto , Holografia , Anamnese
20.
Cureus ; 16(4): e57717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711731

RESUMO

Augmented reality (AR) is an emerging technology that can display three-dimensional patient anatomy in the surgeons' field of view. The use of this technology has grown considerably for both presurgical and intraoperative guidance. A patient diagnosed with breast cancer started to experience numbness in the left hand, which progressed to weakness in the left hand and arm. An MRI was performed demonstrating a 2.9 cm X 1.8 cm lesion with extensive surrounding edema in the posterior fronto-parietal lobes. Surgery was recommended for presumed metastatic disease. Preoperatively, an AR system and Brainlab navigation were registered to the patient. AR, traditional navigation, and ultrasound were all used to localize the lesion and determine the craniotomy site and size. The tumor was removed along the direction of the lesion. Intraoperatively, we used AR to reexamine the tumor details and could appreciate that we had to redirect our surgical trajectory anteriorly and laterally in order to follow along the main axis of the tumor. In doing this, we were able to more confidently remain with the tumor, which by this time was poorly defined by 2D navigation and by direct vision. Postoperative MRI confirmed gross total removal of the tumor. The patient had an uneventful postoperative course with resolution of preoperative symptoms and the final surgical pathology was grade 4 glioblastoma. Here, we describe the valuable use of AR for the resection of a glioma. The system has a seamless registration process and provides the surgeon with a unique view of 3D anatomy overlaid onto the patient's head. This exciting technology can add tremendous value to complex cranial surgeries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...