Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38398934

RESUMO

A single photon avalanche diode (SPAD) cell using N-channel extended-drain metal oxide semiconductor (N-EDMOS) is tested for its hot-carrier damage (HCD) resistance. The stressing gate-voltage (VGS) dependence is compared to hot-hole (HH) injection, positive bias temperature (PBT) instability and off-mode (VGS = 0). The goal was to check an accurate device lifetime extraction using accelerated DC to AC stressing by applying the quasi-static (QS) lifetime technique. N-EDMOS device is devoted to 3D bonding with CMOS imagers obtained by an optimized process with an effective gate-length Leff = 0.25 µm and a SiO2 gate-oxide thickness Tox = 5 nm. The operating frequency is 10 MHz at maximum supply voltage VDDmax = 5.5 V. TCAD simulations are used to determine the real voltage and timing configurations for the device in a mixed structure of the SPAD cell. AC device lifetime is obtained using worst-case DC accelerating degradation, which is transferred by QS technique to the AC waveforms applied to N-EDMOS device. This allows us to accurately obtain the AC device lifetime as a function of the delay and load for a fixed pulse shape. It shows the predominance of the high energy hot-carriers involved in the first substrate current peak during transients.

2.
J Anat ; 244(5): 722-738, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38214368

RESUMO

The semicircular canals of the inner ear are involved in balance and velocity control. Being crucial to ensure efficient mobility, their morphology exhibits an evolutionary conservatism attributed to stabilizing selection. Release of selection in slow-moving animals has been argued to lead to morphological divergence and increased inter-individual variation. In its natural habitat, the house mouse Mus musculus moves in a tridimensional space where efficient balance is required. In contrast, laboratory mice in standard cages are severely restricted in their ability to move, which possibly reduces selection on the inner ear morphology. This effect was tested by comparing four groups of mice: several populations of wild mice trapped in commensal habitats in France; their second-generation laboratory offspring, to assess plastic effects related to breeding conditions; a standard laboratory strain (Swiss) that evolved for many generations in a regime of mobility reduction; and hybrids between wild offspring and Swiss mice. The morphology of the semicircular canals was quantified using a set of 3D landmarks and semi-landmarks analyzed using geometric morphometric protocols. Levels of inter-population, inter-individual (disparity) and intra-individual (asymmetry) variation were compared. All wild mice shared a similar inner ear morphology, in contrast to the important divergence of the Swiss strain. The release of selection in the laboratory strain obviously allowed for an important and rapid drift in the otherwise conserved structure. Shared traits between the inner ear of the lab strain and domestic pigs suggested a common response to mobility reduction in captivity. The lab-bred offspring of wild mice also differed from their wild relatives, suggesting plastic response related to maternal locomotory behavior, since inner ear morphology matures before birth in mammals. The signature observed in lab-bred wild mice and the lab strain was however not congruent, suggesting that plasticity did not participate to the divergence of the laboratory strain. However, contrary to the expectation, wild mice displayed slightly higher levels of inter-individual variation than laboratory mice, possibly due to the higher levels of genetic variance within and among wild populations compared to the lab strain. Differences in fluctuating asymmetry levels were detected, with the laboratory strain occasionally displaying higher asymmetry scores than its wild relatives. This suggests that there may indeed be a release of selection and/or a decrease in developmental stability in the laboratory strain.


Assuntos
Evolução Biológica , Canais Semicirculares , Animais , Camundongos , Canais Semicirculares/anatomia & histologia , Mamíferos , França
3.
Sport Sci Health ; 17(2): 431-439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33250935

RESUMO

OBJECTIVE: Lifestyle and body composition may be simultaneously responsible for immune response modulation. This study aimed to compare plasmatic adipokines concentration and lymphocyte cytokine production in children with different daily steps (DS) range, as well as to discuss the potential negative impact of the social isolation during COVID-19 pandemic in this context. DS can be a useful and low-cost way of monitoring children's health status. STUDY DESIGN: Fifty children were classified into clusters based in DS measured by pedometer: Sedentary Group (DS = 9338 ± 902 steps) and Active Group (DS = 13,614 ± 1003 steps). Plasma and lymphocytes were isolated and cultured to evaluate cytokine production. RESULTS: Sedentary group presented lower adiponectin (7573 ± 232 pg/mL), higher leptin (16,250 ± 1825 pg/mL) plasma concentration, and higher lymphocyte production of IL-17, IFN-gamma, TNF-, IL-2 in relation to active group, suggesting predominance of Th1 response. Otherwise, the active group presented higher lymphocyte supernatant concentration of IL-10 and higher regulatory T cell (Treg) percentage. CONCLUSION: These results indicate that lymphocytes of children performing higher DS have an anti-inflammatory profile, especially of Treg. Besides, the prolonged social isolation in children during the COVID-19 pandemic, limiting physical mobility and exercise, reduces DS and increases adiposity, which could impair the immune system function and raise the susceptibility to inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA