Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39064337

RESUMO

Hybrid strategies that combine conventional top-down lithography with bottom-up molecular assembly are of interest for a range of applications including nanolithography and sensors. Interest in these strategies stems from the ability to create complex architectures over large areas with molecular-scale control and precision. The molecular-ruler process typifies this approach where the sequential layer-by-layer assembly of mercaptoalkanoic acid molecules and metal ions are combined with conventional top-down lithography to create precise, registered nanogaps. However, the quality of the metal-ligated mercaptoalkanoic acid multilayer is a critical characteristic in generating reproducible and robust nanoscale structures via the molecular-ruler process. Therefore, we explore the assembly of alkanethiolate monolayers, mercaptohexadecanoic acid (MHDA) monolayers, and Cu-ligated MHDA multilayers on Au{111} substrates using atomic force microscopy and in situ dynamic spectroscopic ellipsometry. The chemical film thicknesses in situ dynamic spectroscopic ellipsometry agree with previous ex situ surface analytical methods. Moreover, in situ dynamic spectroscopic ellipsometry provides insight into the assembly process without interrupting the assembly process and potentially altering the characteristics of the resulting chemical film. By following the real-time dynamics of each deposition step, the assembly of the Cu-ligated MHDA multilayers can be optimized to minimize deposition time while having minimal impact to the quality of the chemical film.

2.
Immunology ; 171(1): 131-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858978

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.


Assuntos
Aminopeptidases , Antígenos , Humanos , Aminopeptidases/genética , Aminopeptidases/química , Aminopeptidases/metabolismo , Antígenos/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Apresentação de Antígeno
3.
Structure ; 31(4): 435-446.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854301

RESUMO

Protein kinases of the dystonia myotonica protein kinase (DMPK) family are critical regulators of actomyosin contractility in cells. The DMPK kinase MRCK1 is required for the activation of myosin, leading to the development of cortical tension, apical constriction, and early gastrulation. Here, we present the structure, conformation, and membrane-binding properties of Caenorhabditis elegans MRCK1. MRCK1 forms a homodimer with N-terminal kinase domains, a parallel coiled coil of 55 nm, and a C-terminal tripartite module of C1, pleckstrin homology (PH), and citron homology (CNH) domains. We report the high-resolution structure of the membrane-binding C1-PH-CNH module of MRCK1 and, using high-throughput and conventional liposome-binding assays, determine its binding to specific phospholipids. We further characterize the interaction of the C-terminal CRIB motif with Cdc42. The length of the coiled-coil domain of DMPK kinases is remarkably conserved over millions of years of evolution, suggesting that they may function as molecular rulers to position kinase activity at a fixed distance from the membrane.


Assuntos
Distrofia Miotônica , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/química , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Sequência de Aminoácidos , Proteínas Quinases/metabolismo , Caenorhabditis elegans/metabolismo
4.
Biotechnol Adv ; 63: 108081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36529206

RESUMO

Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.


Assuntos
Carboidratos , Glicosiltransferases , Glicosiltransferases/metabolismo , Glicosilação , Engenharia de Proteínas , Células Eucarióticas/metabolismo
5.
J Magn Reson ; 339: 107217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453095

RESUMO

Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR technique that is particularly suitable to determine distances between paramagnetic centers with a broad EPR spectrum, e.g. metal-ion-based ones. As far as high-spin systems (S > ½) are concerned, the RIDME experiment provides not only the basic dipolar frequency but also its overtones, which complicates the determination of interspin distances. Here, we present and discuss in a step-by-step fashion an r.m.s.d.-based approach for the calibration of the overtone coefficients for a series of molecular rulers doubly labeled with Gd(III)-PyMTA tags. The constructed 2D total-penalty diagrams help revealing that there is no unique set of overtone coefficients but rather a certain pool, which can be used to extract distance distributions between high-spin paramagnetic centers, as determined from the RIDME experiment. This is of particular importance for comparing RIDME overtone calibration and distance distributions obtained in different labs.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância de Spin Eletrônica/métodos
6.
Immunobiology ; 226(4): 152112, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34247019

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in controlling the immunopeptidomes available for presentation by MHC (major histocompatibility complex) molecules, thus influences immunodominance and cell-mediated immunity. It carries out this critical function by a unique molecular ruler mechanism that trims antigenic precursors in a peptide-length and sequence dependent manner. Acting as a molecular ruler, ERAP1 is capable of concurrently binding antigen peptide N- and C-termini by its N-terminal catalytic and C-terminal regulatory domains, respectively. As such ERAP1 can not only monitor substrate's lengths, but also exhibit a degree of sequence specificity at substrates' N- and C-termini. On the other hand, it also allows certain sequence and length flexibility in the middle part of peptide substrates that is critical for shaping MHC restricted immunopeptidomes. Here we report structural and biochemical studies to understand the molecular details on how ERAP1 can accommodate side chains of different anchoring residues at the substrate's C-terminus. We also examine how ERAP1 can accommodate antigen peptide precursors with length flexibility. Based on two newly determined complex structures, we find that ERAP1 binds the C-termini of peptides similarly even with different substrate sequences and/or lengths, by utilizing the same hydrophobic specificity pocket to accommodate peptides with either a Phe or Leu as the C-terminal anchor residue. In addition, SPR (surface plasmon resonance) binding analyses in solution further confirm the biological significance of these peptide-ERAP1 interactions. Similar to the binding mode of MHC-I molecules, ERAP1 accommodates for antigenic peptide length difference by allowing the peptide middle part to kink or bulge at the middle of its substrate binding cleft. This explains how SNP coded variants located at the middle of ERAP1 substrate binding cleft would influence the antigen pool and an individual's susceptibility to diseases.


Assuntos
Aminopeptidases/química , Antígenos/química , Antígenos de Histocompatibilidade Menor/química , Peptídeos/química , Sequência de Aminoácidos , Domínios Proteicos , Ressonância de Plasmônio de Superfície
7.
J Pept Sci ; 27(11): e3355, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34077994

RESUMO

ß-Peptides are known to form 14-helices with high conformational rigidity, helical persistence length, and well-defined spacing and orientation regularity of amino acid side chains. Therefore, ß-peptides are well suited to serve as backbone structures for molecular rulers. On the one hand, they can be functionalized in a site-specific manner with molecular probes or fluorophores, and on the other hand, the ß-peptide helices can be recognized and anchored in a biological environment of interest. In this study, the ß-peptide helices were anchored in lipid bilayer membranes, and the helices were elongated in the outer membrane environment. The distances of the covalently bound probes to the membrane surface were determined using graphene-induced energy transfer (GIET) spectroscopy, a method based on the distance-dependent quenching of a fluorescent molecule by a nearby single graphene sheet. As a proof of principle, the predicted distances were determined for two fluorophores bound to the membrane-anchored ß-peptide molecular ruler.


Assuntos
Bicamadas Lipídicas , Peptídeos , Sequência de Aminoácidos , Aminoácidos , Estrutura Secundária de Proteína
8.
ACS Nano ; 14(5): 5956-5967, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216328

RESUMO

Although antibodies remain a primary recognition element in all forms of biosensing, functional limitations arising from their size, stability, and structure have motivated the development and production of many different artificial scaffold proteins for biological recognition. However, implementing such artificial binders into functional high-performance biosensors remains a challenging task. Here, we present the design and application of Förster resonance energy transfer (FRET) nanoprobes comprising small artificial proteins (αRep bidomains) labeled with a Tb complex (Tb) donor on the C-terminus and a semiconductor quantum dot (QD) acceptor on the N-terminus. Specific binding of one or two protein targets to the αReps induced a conformational change that could be detected by time-resolved Tb-to-QD FRET. These single-probe FRET switches were used in a separation-free solution-phase assay to quantify different protein targets at sub-nanomolar concentrations and to measure the conformational changes with sub-nanometer resolution. Probing ligand-receptor binding under physiological conditions at very low concentrations in solution is a special feature of FRET that can be efficiently combined with other structural characterization methods to develop, understand, and optimize artificial biosensors. Our results suggest that the αRep FRET nanoprobes have a strong potential for their application in advanced diagnostics and intracellular live-cell imaging of ligand-receptor interactions.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Semicondutores , Térbio
9.
Curr Biol ; 29(21): 3707-3713.e3, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630952

RESUMO

The type VI secretion system (T6SS) is a multiprotein apparatus that injects protein effectors into target cells, hence playing a critical role in pathogenesis and in microbial communities [1-4]. The T6SS belongs to the broad family of contractile injection systems (CISs), such as Myoviridae bacteriophages and R-pyocins, that use a spring-like tail to propel a needle loaded with effectors [5, 6]. The T6SS tail comprises an assembly baseplate on which polymerizes a needle, made of stacked Hcp hexamers, tipped by the VgrG-PAAR spike complex and wrapped by the contractile sheath made of TssB and TssC [7-13]. The T6SS tail is anchored to the cell envelope by a membrane complex that also serves as channel for the passage of the needle upon sheath contraction [14-16]. In most CISs, the length of the tail sheath is invariable and is usually ensured by a dedicated protein called tape measure protein (TMP) [17-22]. Here, we show that the length of the T6SS tail is constant in enteroaggregative Escherichia coli cells, suggesting that it is strictly controlled. By overproducing T6SS tail subunits, we demonstrate that component stoichiometry does not participate to the regulation of tail length. The observation of longer T6SS tails when the apparatus is relocalized at the cell pole further shows that tail length is not controlled by a TMP. Finally, we show that tail stops its elongation when in contact with the opposite membrane and thus that T6SS tail length is determined by the cell width.


Assuntos
Escherichia coli/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Proteínas de Bactérias/química , Escherichia coli/química , Multimerização Proteica
10.
ACS Nano ; 13(1): 505-514, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30508369

RESUMO

DNA-nanoparticle conjugates are important tools in nanobiotechnology. Knowing the orientation, function, and length of DNA on nanoparticle surfaces at low nanomolar concentrations under physiological conditions is therefore of great interest. Here, we investigate the conformation of a 31 nucleotides (nt) long DNA attached to a semiconductor quantum dot (QD) via Förster resonance energy transfer (FRET) from Tb-DNA probes hybridized to different positions on the QD-DNA. Precise Tb-to-QD distance determination from 7 to 14 nm along 26 nt of the peptide-appended QD-DNA was realized by time-resolved FRET spectroscopy. The FRET nanoruler measured linear single-stranded (ssDNA) and double-stranded (dsDNA) extensions of ∼0.15 and ∼0.31 nm per base, reflecting the different conformations. Comparison with biomolecular modeling confirmed the denser conformation of ssDNA and a possibly more flexible orientation on the QD surface, whereas the dsDNA was fully extended with radial orientation. The temporally distinct photoluminescence decays of the different DNA-FRET configurations were used for prototypical DNA hybridization assays that demonstrated the large potential for extended temporal multiplexing. The extensive experimental and theoretical analysis of 11 different distances/configurations of the same QD-DNA conjugate provided important information on DNA conformation on nanoparticle surfaces and will be an important benchmark for the development and optimization of DNA-nanobiosensors.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Pontos Quânticos/química
11.
Curr Protoc Nucleic Acid Chem ; 73(1): e54, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927110

RESUMO

Most structural techniques provide averaged information or information about a single predominant conformational state. However, biological macromolecules typically function through series of conformations. Therefore, a complete understanding of macromolecular structures requires knowledge of the ensembles that represent probabilities on a conformational free energy landscape. Here we describe an emerging approach, X-ray scattering interferometry (XSI), a method that provides instantaneous distance distributions for molecules in solution. XSI uses gold nanocrystal labels site-specifically attached to a macromolecule and measures the scattering interference from pairs of heavy metal labels. The recorded signal can directly be transformed into a distance distribution between the two probes. We describe the underlying concepts, present a detailed protocol for preparing samples and recording XSI data, and provide a custom-written graphical user interface to facilitate XSI data analysis. © 2018 by John Wiley & Sons, Inc.


Assuntos
Interferometria/métodos , Ácidos Nucleicos/química , Espalhamento de Radiação , Ouro/química , Nanopartículas/química , Probabilidade , Interface Usuário-Computador , Raios X
12.
Adv Exp Med Biol ; 1009: 167-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218559

RESUMO

Measuring distances within or between macromolecules is necessary to understand the chemistry that biological systems uniquely enable. In performing their chemistry, biological macromolecules undergo structural changes over distances ranging from atomic to micrometer scales. X-ray and neutron scattering provide three key assets for tackling this challenge. First, they may be conducted on solutions where the macromolecules are free to sample the conformations that enable their chemistry. Second, there are few limitations on chemical environment for experiments. Third, the techniques can inform upon a wide range of distances at once. Thus scattering, particularly recorded at small angles (SAS), has been applied to a large variety of phenomenon. A challenge in interpreting scattering data is that the desired three dimensional distance information is averaged onto one dimension. Furthermore, the scales and variety of phenomenon interrogated have led to an assortment of functions that describe distances and changes thereof. Here we review scattering studies that characterize biological phenomenon at distances ranging from atomic to 50 nm. We also distinguish the distance distribution functions that are commonly used to describe results from these systems. With available X-ray and neutron scattering facilities, bringing the action that occurs at the atomic to the micrometer scale is now reasonably accessible. Notably, the combined distance and dynamic information recorded by SAS is frequently key to connecting structure to biological activity and to improve macromolecular design strategies and outcomes. We anticipate widespread utilization particularly in macromolecular engineering and time-resolved studies where many contrasting experiments are necessary for resolving chemical mechanisms through structural changes.


Assuntos
Modelos Moleculares , Proteínas/ultraestrutura , Coloração e Rotulagem/métodos , Difração de Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Ouro/química , Humanos , Lipídeos/química , Difração de Nêutrons/instrumentação , Difração de Nêutrons/métodos , Conformação Proteica , Proteínas/química , Espalhamento a Baixo Ângulo , Soluções , Água/química , Difração de Raios X/instrumentação
13.
Beilstein J Nanotechnol ; 8: 2339-2344, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181290

RESUMO

The development of methods to produce nanoscale features with tailored chemical functionalities is fundamental for applications such as nanoelectronics and sensor fabrication. The molecular-ruler process shows great utility for this purpose as it combines top-down lithography for the creation of complex architectures over large areas in conjunction with molecular self-assembly, which enables precise control over the physical and chemical properties of small local features. The molecular-ruler process, which most commonly uses mercaptoalkanoic acids and metal ions to generate metal-ligated multilayers, can be employed to produce registered nanogaps between metal features. Expansion of this methodology to include molecules with other chemical functionalities could greatly expand the overall versatility, and thus the utility, of this process. Herein, we explore the use of alkanethiol molecules as the terminating layer of metal-ligated multilayers. During this study, it was discovered that the solution deposition of alkanethiol molecules resulted in low overall surface coverage with features that varied in height. Because features with varied heights are not conducive to the production of uniform nanogaps via the molecular-ruler process, the vapor-phase deposition of alkanethiol molecules was explored. Unlike the solution-phase deposition, alkanethiol islands produced by vapor-phase deposition exhibited markedly higher surface coverages of uniform heights. To illustrate the applicability of this method, metal-ligated multilayers, both with and without an alkanethiol capping layer, were utilized to create nanogaps between Au features using the molecular-ruler process.

14.
Angew Chem Int Ed Engl ; 56(28): 8139-8143, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28557363

RESUMO

Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.


Assuntos
Rastreamento de Células , Oligossacarídeos/química , Proteínas/química , Acetilgalactosamina/química , Catálise , Eletroforese em Gel de Poliacrilamida , Galactose/química , Galactose Oxidase/química , Glicosilação , Humanos , Células MCF-7 , Mucina-1/química , Estudo de Prova de Conceito
15.
Proc Natl Acad Sci U S A ; 114(7): E1215-E1223, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137848

RESUMO

Lipopolysaccharides (LPS) are essential outer membrane glycolipids in most gram-negative bacteria. Biosynthesis of the O-antigenic polysaccharide (OPS) component of LPS follows one of three widely distributed strategies, and similar processes are used to assemble other bacterial surface glycoconjugates. This study focuses on the ATP-binding cassette (ABC) transporter-dependent pathway, where glycans are completed on undecaprenyl diphosphate carriers at the cytosol:membrane interface, before export by the ABC transporter. We describe Raoultella terrigena WbbB, a prototype for a family of proteins that, remarkably, integrates several key activities in polysaccharide biosynthesis into a single polypeptide. WbbB contains three glycosyltransferase (GT) modules. Each of the GT102 and GT103 modules characterized here represents a previously unrecognized GT family. They form a polymerase, generating a polysaccharide of [4)-α-Rhap-(1→3)-ß-GlcpNAc-(1→] repeat units. The polymer chain is terminated by a ß-linked Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) residue added by a third GT module belonging to the recently discovered GT99 family. The polymerase GT modules are separated from the GT99 chain terminator by a coiled-coil structure that forms a molecular ruler to determine product length. Different GT modules in the polymerase domains of other family members produce diversified OPS structures. These findings offer insight into glycan assembly mechanisms and the generation of antigenic diversity as well as potential tools for glycoengineering.


Assuntos
Proteínas de Bactérias/metabolismo , Enterobacteriaceae/metabolismo , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Sequência de Carboidratos , Enterobacteriaceae/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/química , Estrutura Molecular , Antígenos O/química , Polimerização , Polissacarídeos/química , Polissacarídeos/metabolismo , Controle de Qualidade , Homologia de Sequência de Aminoácidos
16.
Subcell Biochem ; 82: 285-318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101866

RESUMO

In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.


Assuntos
Conectina/química , Proteínas Musculares/química , Proteínas Musculares/ultraestrutura , Miosinas/química , Actinas/química , Actinas/ultraestrutura , Animais , Conectina/ultraestrutura , Humanos , Miosinas/ultraestrutura
17.
Mol Immunol ; 80: 41-49, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27825049

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is involved in the final processing of peptide precursors to generate the N-termini of MHC class I-restricted epitopes. ERAP1 thus influences immunodominance and cytotoxic immune responses by controlling the peptide repertoire available for cell surface presentation by MHC molecules. To enable this critical role in antigen processing, ERAP1 trims peptides by a unique molecular ruler mechanism that turns on/off hydrolysis activity in a peptide-length and -sequence dependent manner. Thus unlike other aminopeptidases, ERAP1 could recognize both the N- and C-termini of peptides in order to read the substrate's length. To exemplify and validate this molecular ruler mechanism, we have carried out crystallographic studies on molecular recognition of antigenic peptide's C-terminus by ERAP1. In this report, we have determined a 2.8Å-resolution crystal structure of an intermolecular complex between the ERAP1 regulatory domain and a natural epitope's C-terminus displayed in a fusion protein. It reveals the structural details of peptide's C-termini recognition by ERAP1. ERAP1 uses specificity pockets on the regulatory domain to bind the peptide's carboxyl end and side chain of the C-terminal anchoring residue. At the same time, flexibility in length and sequence at the middle of peptides is accommodated by a kink with minimal interactions with ERAP1.


Assuntos
Aminopeptidases/química , Apresentação de Antígeno/fisiologia , Antígenos de Histocompatibilidade Menor/química , Peptídeos/química , Aminopeptidases/metabolismo , Animais , Cristalografia por Raios X , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Peptídeos/metabolismo , Conformação Proteica
18.
Bioessays ; 38(9): 903-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27492088

RESUMO

Coiled-coils are found in proteins throughout all three kingdoms of life. Coiled-coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled-coil. Other coiled-coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled-coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled-coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled-coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled-coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.


Assuntos
Conformação Proteica , Proteínas/metabolismo , Animais , Bactérias/metabolismo , Eucariotos/metabolismo , Humanos
19.
Nano Lett ; 16(9): 5353-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27244097

RESUMO

Accurate determination of molecular distances is fundamental to understanding the structure, dynamics, and conformational ensembles of biological macromolecules. Here we present a method to determine the full distance distribution between small (∼7 Å radius) gold labels attached to macromolecules with very high-precision (≤1 Å) and on an absolute distance scale. Our method uses anomalous small-angle X-ray scattering close to a gold absorption edge to separate the gold-gold interference pattern from other scattering contributions. Results for 10-30 bp DNA constructs achieve excellent signal-to-noise and are in good agreement with previous results obtained by single-energy SAXS measurements without requiring the preparation and measurement of single labeled and unlabeled samples. The use of small gold labels in combination with ASAXS read out provides an attractive approach to determining molecular distance distributions that will be applicable to a broad range of macromolecular systems.


Assuntos
DNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Ouro , Conformação Molecular
20.
Small GTPases ; 7(2): 82-92, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-27070834

RESUMO

The Rho-associated coiled-coil containing kinases (ROCK) were first identified as effectors of the small GTPase RhoA, hence their nomenclature. Since their discovery, two decades ago, scientists have sought to unravel the structure, regulation, and function of these essential kinases. During that time, a consensus model has formed, in which ROCK activity is regulated via both Rho-dependent and independent mechanisms. However, recent findings have raised significant questions regarding this model. In their recent publication in Nature Communications, Truebestein and colleagues present the structure of a full-length Rho kinase for the first time. In contrast to previous reports, the authors could find no evidence for autoinhibition, RhoA binding, or regulation of kinase activity by phosphorylation. Instead, they propose that ROCK functions as a molecular ruler, in which the central coiled-coil bridges the membrane-binding regulatory domains to the kinase domains at a fixed distance from the plasma membrane. Here, we explore the consequences of the new findings, re-examine old data in the context of this model, and emphasize outstanding questions in the field.


Assuntos
Quinases Associadas a rho/metabolismo , Animais , Apoptose , Humanos , Fosforilação , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA