Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28435-28440, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768216

RESUMO

The optical and photonic characteristics of monolayer transition metal dichalcogenides (TMDs) play a pivotal role in their functionality as solar cell materials, light-emitting diodes (LEDs), and other electro-optical applications. In this study, we reveal the impact of prolonged illumination on the luminescence properties and Raman spectra of monolayered MoS2 and WS2─a process known as "light soaking". We find a light-induced transition from the physisorption to the chemisorption of ambient O2 and H2O molecules. In parallel, we observe the activation and passivation of defect sites in the samples (depending on their initial defect density), which is attributed to the adsorbed ambient molecules and the resulting light-driven interactions with defect sites. Thus, we can control the active defect density of monolayered TMDs and shed light on the fundamental mechanisms underlying their luminescence properties. Therefore, this work clarifies the source of changes to the luminescence properties of TMDs and opens the path toward their integration into advanced applications that may be affected by light soaking, such as solar cells and energy devices.

2.
ACS Appl Mater Interfaces ; 16(17): 22676-22688, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632875

RESUMO

Two-dimensional polymorphic transition-metal dichalcogenides have drawn attention for their diverse applications. This work explores the complex interplay between strain-induced phase transformation and crack growth behavior in annealed nanocrystalline MoS2. Employing molecular dynamics (MD) simulations, this research focuses on the effect of grain size, misorientation, and annealing on phase evolution and their effects on the mechanical behavior of MoS2. First, examining phase transformation in monocrystalline MoS2 under various stress states reveals distinct behaviors depending on the initial phase (1T or 2H) and crystallographic orientation with respect to loading directions. Notably, transformation from a layered hexagonal to a body-centered tetragonal structure is more noticeable when strain in a zigzag direction is applied to the 1T sample. As such, single crystalline MoS2 with a 1T phase exhibits a 16% lower fracture stress in the armchair direction compared to that with a 2H phase. On the other hand, the 1T phase shows a 5% higher phonon lifetime compared to the 2H phase with similar phonon group velocities. Next, the influence of thermal energy and mechanical stress on the phase transformation of nanocrystalline MoS2 is investigated through annealing and quenching cycles, uncovering 60 and 44% irreversibility of phase transformation for an average grain size of 3 and 11 nm, respectively. Besides, the evolution of nanocrystalline samples with different initial phases and grain sizes is studied under uniaxial and biaxial stress. This study shows an inverse pseudo-Hall-Petch effect with exponents of 0.11 and 0.09 for 2H and 1T, respectively. The study reveals that phase transformation can occur concurrently with crack initiation and propagation with the 1T phase exhibiting a 19% lower grain size sensitivity of fracture stress compared to the 2H phase.

3.
ACS Appl Mater Interfaces ; 16(12): 14890-14901, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491945

RESUMO

Pseudocapacitive kinetics in rationally engineered nanostructures can deliver higher energy and power densities simultaneously. The present report reveals a high-performance all-solid-state flexible symmetric supercapacitor (FSSC) based on MoS2-Mo2N nanowires deposited directly on stainless steel mesh (MoS2-Mo2N/SSM) employing DC reactive magnetron co-sputtering technology. The abundance of synergistically coupled interfaces and junctions between MoS2 nanosheets and Mo2N nanostructures across the nanocomposite results in greater porosity, increased ionic conductivity, and superior electrical conductivity. Consequently, the FSSC device utilizing poly(vinyl alcohol)-sodium sulfate (PVA-Na2SO4) hydrogel electrolyte renders an outstanding cell capacitance of 252.09 F·g-1 (44.12 mF·cm-2) at 0.25 mA·cm-2 and high rate performance within a wide 1.3 V window. Dunn's and b-value analysis reveals significant energy storage by surface-controlled capacitive and pseudocapacitive mechanisms. Remarkably, the symmetric device boosts tremendous energy density ∼10.36 µWh·cm-2 (59.17 Wh·kg-1), superb power density ∼6.5 mW·cm-2 (37.14 kW·kg-1), ultrastable long cyclability (∼93.7% after 10,000 galvanostatic charge-discharge cycles), and impressive mechanical flexibility at 60°, 90°, and 120° bending angles.

4.
Acta Biomater ; 179: 36-60, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552760

RESUMO

Over the years, nanomaterials have been exploited as drug delivery systems and therapeutic agents in cancer treatment. Special emphasis has been placed on structure and shape-mediated drug loading and release. Functional materials, including molybdenum disulfide (MoS2), have shown promising results because of their tunable structure and unmatched physicochemical properties. Specifically, easy surface functionalization and high drug adsorption ability make them ideal candidates. Although the large surface area of nanosheets/nanoflakes may result in high drug loading, the encapsulation efficiency is better for MoS2 nanoflower structures. Due to its high targeting abilities, the loading of chemotherapeutic drugs onto MoS2 may minimize nonspecific cellular death and undesired side effects. Furthermore, due to their strong light-absorption ability, MoS2 nanostructures have been widely exploited as photothermal and photodynamic therapeutic agents. The unexplored dimensions of cancer therapy, including chemodynamic (Fenton-like reaction) and piezo-catalytic (ultrasound-mediated reactive oxygen generation), have been recently unlocked, in which the catalytic properties of MoS2 are utilized to generate toxic free radicals to eliminate cancer. Intriguingly, combining these therapeutic modalities often results in high therapeutic efficacy at low doses and minimizes side effects. With a plethora of recent studies, a thorough analysis of current findings is crucial. Therefore, this review discusses the major advances in this field of research. A brief commentary on the limitations/future outlook/ethical issues of the clinical translation of MoS2-mediated cancer treatments is also deliberated. Overall, in our observations, the MoS2-based nanoformulations hold great potential for future cancer therapy applications. STATEMENT OF SIGNIFICANCE: Development of nanomedicines based on MoS2 has opened new avenues in cancer treatment. The MoS2 with different morphologies (nanosheet/nanoflower/QDs) has shown promising results in controlled and targeted drug delivery, leading to minimized side effects and increased therapeutic efficacy. While existing reviews have primarily focused on the optical/thermal properties utilized in photodynamic/photothermal therapy, the outstanding catalytic properties of MoS2 utilized in cancer therapies (chemodynamic/piezo-catalytic) are often overlooked. This review critically highlights and praises/criticizes individual articles reporting the MoS2-based nanoplatforms for cancer therapy applications. Additionally, MoS2-based combined therapies for synergistic effects are discussed. Furthermore, a brief commentary on the future prospects for clinical translations is also deliberated, which is appealing to various research communities engaged in cancer theranostics and biomedical sciences research.


Assuntos
Antineoplásicos , Dissulfetos , Portadores de Fármacos , Molibdênio , Neoplasias , Molibdênio/química , Humanos , Dissulfetos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Portadores de Fármacos/química , Animais , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico
5.
Nanomaterials (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999291

RESUMO

Implementing a heterostructure by vertically stacking two-dimensional semiconductors is necessary for responding to various requirements in the future of semiconductor technology. However, the chemical-vapor deposition method, which is an existing two-dimensional (2D) material-processing method, inevitably causes heat damage to surrounding materials essential for functionality because of its high synthesis temperature. Therefore, the heterojunction of a 2D material that directly synthesized MoS2 on graphene using a laser-based photothermal reaction at room temperature was studied. The key to the photothermal-reaction mechanism is the difference in the photothermal absorption coefficients of the materials. The device in which graphene and MoS2 were vertically stacked using a laser-based photothermal reaction demonstrated its potential application as a photodetector that responds to light and its stability against cycling. The laser-based photothermal-reaction method for 2D materials will be further applied to various fields, such as transparent display electrodes, photodetectors, and solar cells, in the future.

6.
ACS Nano ; 17(15): 14981-14989, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458690

RESUMO

N,N-Dimethylformamide (DMF) is an essential solvent in industries and pharmaceutics. Its market size range was estimated to be 2 billion U.S. dollars in 2022. Monitoring DMF in solution environments in real time is significant because of its toxicity. However, DMF is not a redox-active molecule; therefore, selective monitoring of DMF in solutions, especially in polar aqueous solutions, in real time is extremely difficult. In this paper, we propose a selective DMF sensor using a molybdenum disulfide (MoS2) field-effect transistor (FET). The sensor responds to DMF molecules but not to similar molecules of formamide, N,N-diethylformamide, and N,N-dimethylacetamide. The plausible atomic mechanism is the oxygen substitution sites on MoS2, on which the DMF molecule shows an exceptional orientation. The thin structure of MoS2-FET can be incorporated into a microfluidic chamber, which leads to DMF monitoring in real time by exchanging solutions subsequently. The designed device shows DMF monitoring in NaCl ionic solutions from 1 to 200 µL/mL. This work proposes the concept of selectively monitoring redox-inactive molecules based on the nonideal atomic affinity site on the surface of two-dimensional semiconductors.

7.
Biosens Bioelectron ; 230: 115270, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023551

RESUMO

MicroRNA-125b (miR-125b) is highly associated with synaptic dysfunction and tau hyperphosphorylation in the early pathogenesis of Alzheimer's disease (AD), making it a promising biomarker for early AD diagnosis. Hence, there is an urgent need for a reliable sensing platform to assist in situ miR-125b detection. In this work, we report a dual "turn-on" fluorescence biosensor based on the nanocomposite of aggregation-induced emission fluorogen (AIEgen)-labeled oligonucleotide (TPET-DNA) probes immobilized on the surface of cationic dextran modified molybdenum disulfide (TPET-DNA@Dex-MoS2). In the presence of the target, TEPT-DNA can hybridize with miR-125b to form a DNA/RNA duplex, causing TPET-DNA to detach from the surface of Dex-MoS2 that simultaneously activates the dual fluorescence enhancement processes: (1) recovery of TPET-DNA signal and (2) strong fluorescent emission from AIEgen triggered by restriction of the intramolecular rotation. The sensing performance of TPET-DNA@Dex-MoS2 was demonstrated by detecting miR-125b in vitro with good sensitivity at the picomolar level and rapid response (≤1 h) without amplification procedures. Furthermore, our nanoprobes exhibited excellent imaging capabilities to aid real-time monitoring of the endogenous miR-125b in PC12 cells and brain tissues of mice AD model induced by local administration of okadaic acid (OA). The fluorescence signals of the nanoprobes indicated miR-125b was spatially associated with phosphorylated tau protein (p-tau) in vitro and in vivo. Therefore, TPET-DNA@Dex-MoS2 could be a promising tool for in situ and real-time monitoring of the AD-related microRNAs and also provide mechanistic insight into the early prognosis of AD.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , MicroRNAs , Camundongos , Ratos , Animais , MicroRNAs/genética , Doença de Alzheimer/genética , Molibdênio , Transferência Ressonante de Energia de Fluorescência , Biomarcadores
8.
Nanotechnology ; 34(24)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36893451

RESUMO

As an alternative anode to graphene, molybdenum disulfide (MoS2) has attracted much attention due to its layered structure and high specific capacity. Moreover, MoS2can be synthesized by hydrothermal method with low cost and the size of its layer spacing can be controlled. In this work, the results of experiment and calculation proved that the presence of intercalated Mo atoms, leading to the expansion of MoS2layer spacing and weakening of Mo-S bonding. For the electrochemical properties, the presence of intercalated Mo atoms causes the lower reduction potentials for the Li+intercalation and Li2S formation. In addition, the effective reduction of diffusion resistance and charge transfer resistance in Mo1+xS2leads to the acquisition of high specific capacity for battery applications.

9.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36838061

RESUMO

High-dispersion polystyrene (PS) microspheres with monodispersity were successfully synthesized by the non-emulsification polymerization method, and three-dimensional (3D) photonic crystals of PS microspheres were fabricated by electrophoretic self-assembly (EPSA). The metal nickel inverse opal structure (IOS) photonic crystal, of which the structural thickness can be freely adjusted via electrochemical deposition (ECD), and subsequently, MnS/MoS2/Ni-IOS specimens were also prepared by ECD. Excellent specific capacitance values (1880 F/g) were obtained at a charge current density of 5 A/g. The samples in this experiment were tested for 2000 cycles of cycle life and still retained a reasonably good level of 76.6% of their initial capacitance value. In this study, the inverse opal structure photonic crystal substrate was used as the starting point, and then the microelectrode material for the MnS/MoS2/Ni-IOS supercapacitor was synthesized. Our findings show that the MnS/MoS2/Ni-IOS microelectrode makes a viable technical contribution to the design and fabrication of high-performance supercapacitors.

10.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500741

RESUMO

Two-dimensional molybdenum disulfide (MoS2) has been extensively investigated in the field of optoelectronic devices. However, most reported MoS2 phototransistors are fabricated using the mechanical exfoliation method to obtain micro-scale MoS2 flakes, which is laboratory- feasible but not practical for the future industrial fabrication of large-scale pixel arrays. Recently, wafer-scale MoS2 growth has been rapidly developed, but few results of uniform large-scale photoelectric devices were reported. Here, we designed a 12 × 12 pixels pixel array image sensor fabricated on a 2 cm × 2 cm monolayer MoS2 film grown by chemical vapor deposition (CVD). The photogating effect induced by the formation of trap states ensures a high photoresponsivity of 364 AW-1, which is considerably superior to traditional CMOS sensors (≈0.1 AW-1). Experimental results also show highly uniform photoelectric properties in this array. Finally, the concatenated image obtained by laser lighting stencil and photolithography mask demonstrates the promising potential of 2D MoS2 for future optoelectrical applications.

11.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558206

RESUMO

An effective way to reduce the power consumption of an integrated circuit is to introduce negative capacitance (NC) into the gate stack. Usually, negative-capacitance field-effect transistors (NCFETs) use both a negative-capacitance layer and a positive-capacitance layer as the stack gate, which is not conductive to the scaling down of devices. In this study, a steep-slope and hysteresis-free MoS2 NCFET is fabricated using a single Hf0.5-xZr0.5-xAl2xOy (HZAO) layer as the gate dielectric. By incorporating several Al atoms into the Hf0.5Zr0.5O2 (HZO) thin film, negative capacitance and positive capacitance can be achieved simultaneously in the HZAO thin film and good capacitance matching can be achieved. This results in excellent electrical performance of the relevant NCFETs, including a low sub-threshold swing of 22.3 mV/dec over almost four orders of drain-current magnitude, almost hysteresis-free, and a high on/off current ratio of 9.4 × 106. Therefore, using a single HZAO layer as the gate dielectric has significant potential in the fabrication of high-performance and low-power dissipation NCFETs compared to conventional HZO/Al2O3 stack gates.

12.
J Mol Model ; 28(10): 310, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094571

RESUMO

We employ first-principle calculations to investigate structural, electronic, magnetic, and optical properties of cobalt and Co-X (X = Fe, Mn) co-doped MoS2. Result demonstrates that pure MoS2 is nonmagnetic, while Co and Co-Fe/Mn co-doping brings magnetism into MoS2 with magnetic moment values of 0 [Formula: see text], 2.022 [Formula: see text], 3.906 [Formula: see text], and 3.643 [Formula: see text] respectively. d states of dopants and p-d hybridization bring significant improvements in electronic properties of MoS2. Novelty of current work lies not only in origin of magnetism in the proposed materials but also in absorption spectra which show blueshift. We notice reduction in optical band gap with Co and Co-Fe/Mn co-doping. Enhanced absorption and conductivity with decrease in reflectivity illustrate potential uses of these materials for revolutionizing future of optoelectronics, spintronics, magneto-optics, and photonics devices. Moreover, crossroads of MoS2 and allied materials may further explore new avenues in sensing, artificial intelligence, and miniaturization of existing technology.

13.
Nano Lett ; 22(18): 7457-7466, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36108061

RESUMO

We demonstrate the fabrication of field-effect transistors based on single-layer MoS2 and a thin layer of BaTiO3 (BTO) dielectric, isolated from its parent epitaxial template substrate. Thin BTO provides an ultrahigh-κ gate dielectric effectively screening Coulomb scattering centers. These devices show mobilities substantially larger than those obtained with standard SiO2 dielectrics and comparable with values obtained with hexagonal boron nitride, a dielectric employed for fabrication of high-performance two-dimensional (2D) based devices. Moreover, the ferroelectric character of BTO induces a robust hysteresis of the current vs gate voltage characteristics, attributed to its polarization switching. This hysteresis is strongly suppressed when the device is warmed up above the tetragonal-to-cubic transition temperature of BTO that leads to a ferroelectric-to-paraelectric transition. This hysteretic behavior is attractive for applications in memory storage devices. Our results open the door to the integration of a large family of complex oxides exhibiting strongly correlated physics in 2D-based devices.

14.
Micromachines (Basel) ; 13(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36014170

RESUMO

Copper zinc tin sulfide (CZTS) can be considered an important absorber layer material for utilization in thin film solar cell devices because of its non-toxic, earth abundance, and cost-effective properties. In this study, the effect of molybdenum disulfide (MoS2) as a buffer layer on the different parameters of CZTS-based solar cell devices was explored to design a highly efficient solar cell. While graphene is considered a transparent conducting oxide (TCO) layer for the superior quantum efficiency of CZTS thin film solar cells, MoS2 acts as a hole transport layer to offer electron-hole pair separation and an electron blocking layer to prevent recombination at the graphene/CZTS interface. This study proposed and analyzed a competent and economic CZTS solar cell structure (graphene/MoS2/CZTS/Ni) with MoS2 and graphene as the buffer and TCO layers, respectively, using the Solar Cell Capacitance Simulator (SCAPS)-1D. The proposed structure exhibited the following enhanced solar cell performance parameters: open-circuit voltage-0.8521 V, short-circuit current-25.3 mA cm-2, fill factor-84.76%, and efficiency-18.27%.

15.
Beilstein J Nanotechnol ; 13: 528-537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812249

RESUMO

Non-platinum electrodes for photoelectric devices are challenging and attractive to the scientific community. A thin film of molybdenum disulfide (MoS2) was prepared on substrates coated with fluorine-doped tin oxide (FTO) to substitute the platinum counter electrode (CE) for dye-sensitized solar cells (DSSCs). Herein, we synthesized layered and honeycomb-like MoS2 thin films via the cyclic voltammetry (CV) route. Thickness and morphology of the MoS2 thin films were controlled via the concentration of precursor solution. The obtained results showed that MoS2 thin films formed at a low precursor concentration had a layered morphology while a honeycomb-like MoS2 thin film was formed at a high precursor concentration. Both types of MoS2 thin film were composed of 1T and 2H structures and exhibited excellent electrocatalytic activity for the I3 -/I- redox couple. DSSCs assembled using these MoS2 CEs showed a maximal power conversion efficiency of 7.33%. The short-circuit value reached 16.3 mA·cm-2, which was higher than that of a conventional Pt/FTO CE (15.3 mA·cm-2). This work reports for the first time the possibility to obtain a honeycomb-like MoS2 thin film morphology by the CV method and investigates the effect of film structure on the electrocatalytic activity and photovoltaic performance of CEs for DSSC application.

16.
Adv Mater ; 34(48): e2202472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35728050

RESUMO

2D semiconductors, such as molybdenum disulfide (MoS2 ), have attracted tremendous attention in constructing advanced monolithic integrated circuits (ICs) for future flexible and energy-efficient electronics. However, the development of large-scale ICs based on 2D materials is still in its early stage, mainly due to the non-uniformity of the individual devices and little investigation of device and circuit-level optimization. Herein, a 4-inch high-quality monolayer MoS2 film is successfully synthesized, which is then used to fabricate top-gated (TG) MoS2 field-effect transistors with wafer-scale uniformity. Some basic circuits such as static random access memory and ring oscillators are examined. A pass-transistor logic configuration based on pseudo-NMOS is then employed to design more complex MoS2 logic circuits, which are successfully fabricated with proper logic functions tested. These preliminary integration efforts show the promising potential of wafer-scale 2D semiconductors for application in complex ICs.

17.
ACS Nano ; 16(6): 8798-8811, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35675588

RESUMO

Flexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoinitiators. Moreover, these systems frequently demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. To address these challenges, we developed a class of shear-thinning hydrogels as biomaterial inks for 3D printing flexible bioelectronics. These hydrogels are engineered through a facile vacancy-driven gelation of MoS2 nanoassemblies with naturally derived polymer-thiolated gelatin. Due to shear-thinning properties, these nanoengineered hydrogels can be printed into complex shapes that can respond to mechanical deformation. The chemically cross-linked nanoengineered hydrogels demonstrate a 20-fold rise in compressive moduli and can withstand up to 80% strain without permanent deformation, meeting human anatomical flexibility. The nanoengineered network exhibits high conductivity, compressive modulus, pseudocapacitance, and biocompatibility. The 3D-printed cross-linked structure demonstrates excellent strain sensitivity and can be used as wearable electronics to detect various motion dynamics. Overall, the results suggest that these nanoengineered hydrogels offer improved mechanical, electronic, and biological characteristics for various emerging biomedical applications including 3D-printed flexible biosensors, actuators, optoelectronics, and therapeutic delivery devices.


Assuntos
Hidrogéis , Tinta , Humanos , Hidrogéis/química , Impressão Tridimensional , Condutividade Elétrica , Gelatina , Polímeros
18.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563136

RESUMO

In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Técnicas Biossensoriais/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Microscopia Eletrônica de Transmissão , Molibdênio/química , Análise Espectral Raman
19.
Nanotechnology ; 33(30)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35428034

RESUMO

MoS2crystals grown by chemical vapor deposition are suited for realization of practical 2D semiconductor-based electronics. In order to construct complementary circuits with n-type MoS2, another p-type semiconductor, whose performance can be adjusted corresponding to that of MoS2in the limited chip area, has to be sought. Herein, we present a method for tuning switching threshold voltages of complementary inverters simply via inkjet printing without changing their channel dimensions. Random networks of inkjet printed single-walled carbon nanotubes are formed as p-channels beside MoS2, and their density and thickness are controlled by varying the number of printed layers. As a result, p-type transistor characteristics as well as inverter characteristics are facilely tuned only by varying the number of printed layers.

20.
ACS Biomater Sci Eng ; 8(4): 1706-1716, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35291764

RESUMO

The combination of multiple treatments has recently been investigated for tumor treatment. In this study, molybdenum disulfide (MoS2) with excellent photothermal conversion performance was used as the core, and manganese dioxide (MnO2), which responds to the tumor microenvironment, was loaded on its surface by liquid deposition to form a mesoporous core-shell structure. Then, the chemotherapeutic drug Adriamycin (DOX) was loaded into the hole. To further enhance its water solubility and stability, the surface of MnO2 was modified with mPEG-NH2 to prepare the combined antitumor nanocomposite MoS2@DOX/MnO2-PEG (MDMP). The results showed that MDMP had a diameter of about 236 nm, its photothermal conversion efficiency was 33.7%, and the loading and release rates of DOX were 13 and 65%, respectively. During in vivo and in vitro studies, MDMP showed excellent antitumor activity. Under the combined treatment, the tumor cell viability rate was only 11.8%. This nanocomposite exhibits considerable potential for chemo-photothermal combined antitumor therapy.


Assuntos
Molibdênio , Nanopartículas , Dissulfetos , Compostos de Manganês/farmacologia , Molibdênio/química , Molibdênio/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Óxidos/farmacologia , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA