Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.560
Filtrar
1.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39092607

RESUMO

Branching morphogenesis is a characteristic feature of many essential organs, such as the lung and kidney, and most glands, and is the net result of two tissue behaviors: branch point initiation and elongation. Each branched organ has a distinct architecture customized to its physiological function, but how patterning occurs in these ramified tubular structures is a fundamental problem of development. Here, we use quantitative 3D morphometrics, time-lapse imaging, manipulation of ex vivo cultured mouse embryonic organs and mice deficient in the planar cell polarity component Vangl2 to address this question in the developing mammary gland. Our results show that the embryonic epithelial trees are highly complex in topology owing to the flexible use of two distinct modes of branch point initiation: lateral branching and tip bifurcation. This non-stereotypy was contrasted by the remarkably constant average branch frequency, indicating a ductal growth invariant, yet stochastic, propensity to branch. The probability of branching was malleable and could be tuned by manipulating the Fgf10 and Tgfß1 pathways. Finally, our in vivo data and ex vivo time-lapse imaging suggest the involvement of tissue rearrangements in mammary branch elongation.


Assuntos
Glândulas Mamárias Animais , Morfogênese , Animais , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Feminino , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fator de Crescimento Transformador beta1/metabolismo , Imagem com Lapso de Tempo , Polaridade Celular , Embrião de Mamíferos/metabolismo , Transdução de Sinais
2.
Dev Cell ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116876

RESUMO

Hox transcription factors play crucial roles in organizing developmental patterning across metazoa, but how these factors trigger regional morphogenesis has largely remained a mystery. In the developing gut, Hox genes help demarcate identities of intestinal subregions early in embryogenesis, which ultimately leads to their specialization in both form and function. Although the midgut forms villi, the hindgut develops sulci that resolve into heterogeneous outgrowths. Combining mechanical measurements of the embryonic chick intestine and mathematical modeling, we demonstrate that the posterior Hox gene HOXD13 regulates biophysical phenomena that shape the hindgut lumen. We further show that HOXD13 acts through the transforming growth factor ß (TGF-ß) pathway to thicken, stiffen, and promote isotropic growth of the subepithelial mesenchyme-together, these features lead to hindgut-specific surface buckling. TGF-ß, in turn, promotes collagen deposition to affect mesenchymal geometry and growth. We thus identify a cascade of events downstream of positional identity that direct posterior intestinal morphogenesis.

3.
MethodsX ; 13: 102855, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39105087

RESUMO

Study of morphogenesis and its regulation requires analytical tools that enable simultaneous assessment of processes operating at cellular level, such as synthesis of transcription factors (TF), with their effects at the tissue scale. Most current studies conduct histological, cellular and immunochemical (IHC) analyses in separate steps, introducing inevitable biases in finding and alignment of areas of interest at vastly distinct scales of organization, as well as image distortion associated with image repositioning or file modifications. These problems are particularly severe for longitudinal analyses of growing structures that change size and shape. Here we introduce a python-based application for automated and complete whole-slide measurement of expression of multiple TFs and associated cellular morphology. The plugin collects data at customizable scale from the cell-level to the entire structure, records each data point with positional information, accounts for ontogenetic transformation of structures and variation in slide positioning with scalable grid, and includes a customizable file manager that outputs collected data in association with full details of image classification (e.g., ontogenetic stage, population, IHC assay). We demonstrate the utility and accuracy of this application by automated measurement of morphology and associated expression of eight TFs for more than six million cells recorded with full positional information in beak tissues across 12 developmental stages and 25 study populations of a wild passerine bird. Our script is freely available as an open-source Fiji plugin and can be applied to IHC slides from any imaging platforms and transcriptional factors.

4.
Bioessays ; : e2400105, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101295

RESUMO

Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.

5.
Development ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133135

RESUMO

Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells including for the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation, or death. Conditional loss of gata6 starting at 24 hr is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole with decreased expression levels of anterior second heart field (aSHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.

6.
Dev Cell ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137775

RESUMO

Formation of fluid-filled lumina by epithelial tissues is essential for organ development. How cells control the hydraulic and cortical forces to control lumen morphology is not well understood. Here, we quantified the mechanical role of tight junctions in lumen formation using MDCK-II cysts. We found that the paracellular ion barrier formed by claudin receptors is not required for the hydraulic inflation of a lumen. However, the depletion of the zonula occludens scaffold resulted in lumen collapse and folding of apical membranes. Combining quantitative measurements of hydrostatic lumen pressure and junctional tension with modeling enabled us to explain lumen morphologies from the pressure-tension force balance. Tight junctions promote lumen inflation by decreasing cortical tension via the inhibition of myosin. In addition, our results suggest that excess apical area contributes to lumen opening. Overall, we provide a mechanical understanding of how epithelial cells use tight junctions to modulate tissue and lumen shape.

7.
Biol Open ; 13(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39162010

RESUMO

Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.


Assuntos
Movimento Celular , Modelos Biológicos , Xenopus , Animais , Xenopus/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Adesão Celular , Xenopus laevis/embriologia , Simulação por Computador
8.
Cell Rep ; 43(8): 114615, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39133615

RESUMO

In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.

9.
Curr Biol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39137785

RESUMO

Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and non-muscle myosin II (MyoII) toward neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.

10.
Exp Cell Res ; : 114188, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128553

RESUMO

Cancer stem cells (CSC) are thought to be responsible for cancer phenotypes and cellular heterogeneity. Here we demonstrate that the human colon cancer cell line DLD1 contains two types of CSC-like cells that undergo distinct morphogenesis in the reconstituted basement membrane gel Matrigel. In our method with cancer cell spheroids, the parent cell line (DLD1-P) developed grape-like budding structures, whereas the other (DLD1-Wm) and its single-cell clones dynamically developed worm-like ones. Gene expression analysis suggested that the former mimicked intestinal crypt-villus morphogenesis, while the latter mimicked embryonic hindgut development. The organoids of DLD1-Wm cells rapidly extended in two opposite directions by expressing dipolar proteolytic activity. The invasive morphogenesis required the expression of MMP-2 and CD133 genes and ROCK activity. These cells also exhibited gastrula-like morphogenesis even in two-dimensional cultures without Matrigel. Moreover, the two DLD1 cell lines showed clear differences in cellular growth, tumor growth and susceptibility to paclitaxel. This study also provides a simple organoid culture method for human cancer cell lines. HT-29 and other cancer cell lines underwent characteristic morphogenesis in direct contact with normal fibroblasts. Such organoid cultures would be useful for investigating the nature of CSCs and for screening anti-cancer drugs. Our results lead to the hypothesis that CSC-like cells with both invasive activity and a fetal phenotype, i.e,. oncofetal CSCs, are generated in some types of colon cancers.

11.
iScience ; 27(7): 110299, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39055943

RESUMO

Lumens are crucial features of the tissue architecture in both the healthy exocrine pancreas, where ducts shuttle enzymes from the acini to the intestine, and in the precancerous lesions of the highly lethal pancreatic ductal adenocarcinoma (PDAC), similarly displaying lumens that can further develop into cyst-like structures. Branched pancreatic-cancer derived organoids capture key architectural features of both the healthy and diseased pancreas, including lumens. However, their transition from a solid mass of cells to a hollow tissue remains insufficiently explored. Here, we show that organoids display two orthogonal but complementary lumen formation mechanisms: one relying on fluid intake for multiple microlumen nucleation, swelling and fusion, and the other involving the death of a central cell population, thereby hollowing out cavities. These results shed further light on the processes of luminogenesis, deepening our understanding of the early formation of PDAC precancerous lesions, including cystic neoplasia.

12.
Heliyon ; 10(13): e33506, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040362

RESUMO

Objective: The objective of this study was to investigate the impact of transforming growth factor ß1 (TGF-ß1) on epithelial development using an ex vivo model of submandibular gland (SMG) epithelial-mesenchymal separation. Materials and methods: The ex vivo model was established by separating E13 mouse SMG epithelia and mesenchyme, culturing them independently for 24 h, recombining them, and observing branching morphogenesis. Microarray analysis was performed to evaluate the transcriptome of epithelia treated with and without 1 ng/ml TGF-ß1. Differential gene expression, pathway enrichment, and protein-protein interaction networks were analyzed. Quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence were employed to validate the mRNA and protein levels. Results: Recombined SMGs using separated epithelia and mesenchyme that were cultured for 24 h showed a significant inhibition of epithelial development compared to SMGs recombined immediately after separation. The level of TGF-ß1 decreased in the SMG epithelia after epithelia-mesenchyme separation. Epithelia that were separated from mesenchyme for 24 h and pretreated with 1 ng/ml TGF-ß1 continued to develop after recombination with mesenchyme, while epithelia without 1 ng/ml TGF-ß1 treatment did not. Microarray analysis suggested pathway enrichment related to epithelial development and an upregulation of Sox2 in the 1 ng/ml TGF-ß1-treated epithelia. Further experiments validated the phosphorylation of SMAD2 and SMAD3, upregulation of SOX2 and genes associated with epithelial development, including Prol1, Dcpp1, Bhlha15, Smgc, and Bpifa2. Additionally, 1 ng/ml TGF-ß1 inhibited epithelial apoptosis by improving the BCL2/BAX ratio and reducing cleaved caspase 3. Conclusions: The addition of 1 ng/ml TGF-ß1 maintained the developmental potential of embryonic SMG epithelia separated from mesenchyme for 24 h. This suggests that 1 ng/ml TGF-ß1 may partially compensate for the role of mesenchyme during the separation phase, although its compensation is limited in extent.

13.
New Phytol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044722

RESUMO

The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear. Manipulation of the mechanical constraints affecting either the in vivo or in vitro growth of oilseed rape embryos was combined with analytical approaches, including magnetic resonance imaging and computer graphic reconstruction, immunolabelling, flow cytometry, transcriptomic, proteomic, lipidomic and metabolomic profiling. Our data implied that, in vivo, the imposition of mechanical restraints impeded the expansion of testa and endosperm, resulting in the embryo's deformation. An acceleration in embryonic development was implied by the cessation of cell proliferation and the stimulation of lipid and protein storage, characteristic of embryo maturation. The underlying molecular signature included elements of cell cycle control, reactive oxygen species metabolism and transcriptional reprogramming, along with allosteric control of glycolytic flux. Constricting the space allowed for the expansion of in vitro grown embryos induced a similar response. The conclusion is that the imposition of mechanical constraints over the growth of the developing oilseed rape embryo provides an important trigger for its maturation.

14.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39045847

RESUMO

One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.


Assuntos
Regeneração , Regeneração/fisiologia , Regeneração/genética , Animais , Humanos , Morfogênese
15.
Methods Mol Biol ; 2805: 171-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008182

RESUMO

Biophysical factors, including changes in mechanical stiffness, have been shown to influence the morphogenesis of developing organs. There is a lack of experimental techniques, however, that can probe the mechanical properties of embryonic tissues-especially those which are not mechanically or optically accessible, such as the visceral organs of the developing mouse embryo. Here, using the embryonic kidney as a model system, we describe a method to use microindentation to quantify tissue-level regional differences in the mechanical properties of an embryonic organ. This technique is generalizable and can be used to quantify patterns of tissue stiffness within other developing organ systems. Going forward, these data will enable new experimental studies of the role of biophysical cues during organogenesis.


Assuntos
Rim , Animais , Camundongos , Rim/embriologia , Rim/citologia , Fenômenos Biomecânicos , Organogênese , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia
16.
Vet Res Forum ; 15(6): 297-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035480

RESUMO

The ostrich (Struthio camelus) is an important wild species highlighted in national and international livestock industry. This research was conducted to analyze the development of the ostrich respiratory system during fetal and embryonic stages. A total of 50 fertile ostrich eggs were collected from commercial farms and then incubated at 36.00 - 37.00 ˚C and 25.00 ± 2.00% humidity for 40 days. Sections were taken on days 13, 22, 26, 30, 36, and 42 of incubation from the lung and the cranial, middle, and caudal parts of the neck after decapitation of ostrich embryos and blood drainage. After fixation, processing, blocking, and sectioning, all samples were stained by Hematoxylin and Eosin, Alcian Blue (AB), Van Gieson, and Periodic acid-Schiff (PAS) techniques. It was concluded that the trachea in the 13-day-old embryo and goblet cells (PAS-positive and AB-positive) had incomplete rings of hyaline cartilage and differentiation of mesenchymal to the loose connective tissue. The bronchial stage of the lung was observed in the 22-day-old embryo, pseudoglandular stage in the 26-day-old embryo, and parabrachial and air capillary stage in the 30-day-old embryo. The information obtained from this study will be useful for diagnosing pathologies affecting this vital system and results in improving industrial breeding management.

17.
Front Nutr ; 11: 1417526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036490

RESUMO

Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.

18.
Biochem Biophys Res Commun ; 731: 150396, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018974

RESUMO

Individual cells have numerous competencies in physiological and metabolic spaces. However, multicellular collectives can reliably navigate anatomical morphospace towards much larger, reliable endpoints. Understanding the robustness and control properties of this process is critical for evolutionary developmental biology, bioengineering, and regenerative medicine. One mechanism that has been proposed for enabling individual cells to coordinate toward specific morphological outcomes is the sharing of stress (where stress is a physiological parameter that reflects the current amount of error in the context of a homeostatic loop). Here, we construct and analyze a multiscale agent-based model of morphogenesis in which we quantitatively examine the impact of stress sharing on the ability to reach target morphology. We found that stress sharing improves the morphogenetic efficiency of multicellular collectives; populations with stress sharing reached anatomical targets faster. Moreover, stress sharing influenced the future fate of distant cells in the multi-cellular collective, enhancing cells' movement and their radius of influence, consistent with the hypothesis that stress sharing works to increase cohesiveness of collectives. During development, anatomical goal states could not be inferred from observation of stress states, revealing the limitations of knowledge of goals by an extern observer outside the system itself. Taken together, our analyses support an important role for stress sharing in natural and engineered systems that seek robust large-scale behaviors to emerge from the activity of their competent components.

19.
Genetics ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028768

RESUMO

Neurons are highly polarized cells with dendrites and axons. Dendrites, which receive sensory information or input from other neurons, often display elaborately branched morphologies. While mechanisms that promote dendrite branching have been widely studied, less is known about the mechanisms that restrict branching. Using the nematode Caenorhabditis elegans, we identify rabr-1 (for Rab-related gene 1) as a factor that restricts branching of the elaborately branched dendritic trees of PVD and FLP somatosensory neurons. Animals mutant for rabr-1 show excessively branched dendrites throughout development and into adulthood in areas where the dendrites overlay epidermal tissues. Phylogenetic analyses show that RABR-1 displays similarity to small GTPases of the Rab-type, although based on sequence alone, no clear vertebrate ortholog of RABR-1 can be identified. We find that rabr-1 is expressed and can function in epidermal tissues, suggesting that rabr-1 restricts dendritic branching cell-non-autonomously. Genetic experiments further indicate that for the formation of ectopic branches rabr-1 mutants require the genes of the Menorin pathway, which have been previously shown to mediate dendrite morphogenesis of somatosensory neurons. A translational reporter for RABR-1 reveals a subcellular localization to punctate, perinuclear structures, which correlates with endosomal and autophagosomal markers, but anticorrelates with lysosomal markers suggesting an amphisomal character. Point mutations in rabr-1 analogous to key residues of small GTPases suggest that rabr-1 functions in a GTP-bound form independently of GTPase activity. Taken together, rabr-1 encodes for an atypical small GTPase of the Rab-type that cell-non-autonomously restricts dendritic branching of somatosensory neurons, likely independently of GTPase activity.

20.
Curr Biol ; 34(14): 3165-3177.e3, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38959881

RESUMO

How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers "zippering" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.


Assuntos
Drosophila melanogaster , Animais , Drosophila melanogaster/fisiologia , Epitélio/fisiologia , Células Epiteliais/fisiologia , Microscopia/métodos , Embrião não Mamífero/fisiologia , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA