Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(34): e202407472, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38847278

RESUMO

The membranization of membrane-less coacervates paves the way for the exploitation of complex protocells with regard to structural and cell-like functional behaviors. However, the controlled transformation from membranized coacervates to vesicles remains a challenge. This can provide stable (multi)phase and (multi)compartmental architectures through the reconfiguration of coacervate droplets in the presence of (bioactive) polymers, bio(macro)molecules and/or nanoobjects. Herein, we present a continuous protocell transformation from membrane-less coacervates to membranized coacervates and, ultimately, to giant hybrid vesicles. This transformation process is orchestrated by altering the balance of non-covalent interactions through varying concentrations of an anionic terpolymer, leading to dynamic processes such as spontaneous membranization of terpolymer nanoparticles at the coacervate surface, disassembly of the coacervate phase mediated by the excess anionic charge, and the redistribution of coacervate components in membrane. The diverse protocells during the transformation course provide distinct structural features and molecular permeability. Notably, the introduction of multiphase coacervates in this continuous transformation process signifies advancements toward the creation of synthetic cells with different diffusible compartments. Our findings emphasize the highly controlled continuous structural reorganization of coacervate protocells and represents a novel step toward the development of advanced and sophisticated synthetic protocells with more precise compositions and complex (membrane) structures.


Assuntos
Células Artificiais , Células Artificiais/química , Polímeros/química , Nanopartículas/química
2.
ACS Appl Mater Interfaces ; 16(8): 9826-9838, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38377530

RESUMO

Improved techniques for the administration of chemotherapeutic drugs are required to enhance tumor therapy efficacy and reduce the side effects of chemotherapy due to insufficient targeting and limited intratumoral drug release. Controlled drug delivery systems combined with thermotherapy are expected to play an important role in personalized tumor therapy. Herein, a novel microwave-responsive transformable magnetic liquid-metal (MLM) nanoplatform is designed for effective endosomal escape that facilitates intracellular drug delivery and enhanced anticancer therapy. The MLM nanoplatform exhibits a sensitive magnetic resonance imaging function for imaging-guided therapy and brilliant synergistic effects of chemotherapy with microwave thermal therapy to kill tumor cells. Once endocytosed by targeted tumor cells, the deep penetration of microwave energy can be absorbed by the MLM nanoplatform to convert heat and reactive oxygen species, which induces the shape transformation from nanospheres to large rods, resulting in the physical disruption of the endosomal membrane for intracellular drug release. Furthermore, the MLM nanoplatform synergistic therapy could activate immunomodulatory effects by M1 macrophage polarization and T cell infiltration, thus inhibiting tumor growth and lung metastasis. This work based on microwave-driven transformable magnetic liquid-metal nanoplatform provides novel ways to precisely control drug delivery and high-efficiency cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Micro-Ondas , Sistemas de Liberação de Medicamentos/métodos , Metais , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imageamento por Ressonância Magnética , Nanopartículas/uso terapêutico , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123682, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042120

RESUMO

In this work a facile, rapid, reproducible and non-toxic approach has been demonstrated for synthesis of most stable AuNPs from bark extract of Lannea Grandis Coromandelica. UV-Visible spectroscopy, FTIR, TEM, SAED, EDX, XRD, DLS, Zeta Potential, FE-SEM, AFM and XPS techniques were employed for the characterization of synthesized LGC-AuNPs. The UV-Vis spectra of LGC-AuNPs gave SPR peak at 536 nm while the TEM analysis revealed LGC-AuNPs have 20.75 nm size with spherical in shape. DLS study showed the AuNPs have average diameter 50.18 nm. The synthesized AuNPs exhibited very high selectivity, rapid response in recognition towards Zn2+ and Hg2+ ions by changing its color within 20 sec. This proposed sensor can detect very low picomolar level of Zn2+ and Hg2+ ions (LOD value for Zn2+ and Hg2+ were found 1.36 pM and 24.60 pM respectively). Here we also studied effect of several factors such as variation of conc of gold, temperature, incubation time, pH, salt, solvent (polar protic and polar aprotic) to know in which condition AuNPs have high stability and sensitivity. The data revealed that synthesized AuNPs was stable up to two years at pH 6.5 at room temperature in water media and under this condition, it shows maximum sensitivity and reactivity. Moreover, here interference study was carried out to identify high selectivity of synthesized LGC-AuNPs probe in presence of different metal ions. The real sample analyses also revealed the great applicability of this probe. Therefore, this simple, rapid, low-cost, sensing activity appeared to hold great sensibleness for detection of heavy metal ions in real sample.


Assuntos
Mercúrio , Nanopartículas Metálicas , Ouro/química , Colorimetria/métodos , Casca de Planta/química , Nanopartículas Metálicas/química , Mercúrio/análise , Íons , Zinco
4.
Mater Today Bio ; 24: 100903, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130427

RESUMO

In tumor treatment, the highly disordered vascular system and lack of accumulation of chemotherapeutic drugs in tumors severely limit the therapeutic role of nanocarriers. Smaller drug-containing nanoparticles (NPs) can better penetrate the tumor but are easily removed, which severely limits the tumor-killing properties of the drug. The chemotherapeutic medication doxorubicin (DOX) is highly toxic to the heart, but this toxicity can be effectively mitigated and the combined anticancer effect can be enhanced by clinically incorporating curcumin (CUR) as part of the dual therapy. We designed a small-molecule peptide, Pep1, containing a targeting peptide (CREKA) and a pH-responsive moiety. These NPs can target the blood vessels in tumor microthrombi and undergo a morphological shift in the tumor microenvironment. This process enhances the penetration and accumulation of drugs, ultimately improving the effectiveness of cancer treatment. In vitro and in vivo experiments demonstrated that this morphological transformation allowed rapid and effective drug release into tumors, the effective inhibition of tumor angiogenesis, and the promotion of tumor cell apoptosis, thus effectively killing tumor cells. Our findings provide a novel and simple approach to nhibit the growth and metastasis of hepatocellular carcinoma.

5.
ACS Appl Mater Interfaces ; 16(1): 166-177, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38143309

RESUMO

Tumor-associated platelets can bind to tumor cells and protect circulating tumor cells from NK-mediated immune surveillance. Tumor-associated platelets secrete cytokines to induce the epithelial-mesenchymal transition (EMT) in tumor cells, which promotes tumor metastasis. Combining chemotherapeutic agents with antiplatelet drugs can reduce the occurrence of metastasis, but the systemic application of chemotherapeutic agents and antiplatelet drugs is prone to causing serious side effects. Therefore, delivering drugs to the tumor microthrombus site for long-lasting inhibition is a problem that needs to be addressed. Here, we show that small molecule peptide nanoparticles containing the Cys-Arg-Glu-Lys-Ala (CREKA) peptide can deliver the platelet inhibitor dipyridamole (DIP) and the chemotherapeutic drug paclitaxel (PTX) to tumor tissues, thereby inhibiting tumor-associated platelet function while killing tumor cells. The drug-loaded nanoparticles PD/Pep1 inhibited platelet-tumor cell interactions, were effectively taken up by tumor cells, and underwent morphological transformation induced by alkaline phosphatase (ALP) to prolong the retention time of the drugs. After intravenous injection, PD/Pep1 can target tumors and inhibit tumor metastasis. Thus, this small molecule peptide nanoformulation provides a simple strategy for efficient drug delivery and shows promise as a novel cancer therapy platform.


Assuntos
Nanopartículas , Células Neoplásicas Circulantes , Humanos , Paclitaxel , Inibidores da Agregação Plaquetária/farmacologia , Dipiridamol/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Nanopartículas/química , Linhagem Celular Tumoral
6.
Artigo em Inglês | MEDLINE | ID: mdl-38112883

RESUMO

PURPOSE: Semantic segmentation of tubular structures, such as blood vessels and cell membranes, is a very difficult task, and it tends to break many predicted regions in the middle. This problem is due to the fact that tubular ground truth is very thin, and the number of pixels is extremely unbalanced compared to the background. METHODS: We present a novel training method using pseudo-labels generated by morphological transformation. Furthermore, we present an attention module using thickened pseudo-labels, called the expanded tube attention (ETA) module. By using the ETA module, the network learns thickened regions based on pseudo-labels at first and then gradually learns thinned original regions while transferring information in the thickened regions as an attention map. RESULTS: Through experiments conducted on retina vessel image datasets using various evaluation measures, we confirmed that the proposed method using ETA modules improved the clDice metric accuracy in comparison with the conventional methods. CONCLUSIONS: We demonstrated that the proposed novel expanded tube attention module using thickened pseudo-labels can achieve easy-to-hard learning.

7.
Macromol Rapid Commun ; 44(21): e2300360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37566799

RESUMO

The construction of tunable morphological systems has important implications for understanding the mechanism of molecular self-assembly. In this study, a spiropyran derivative M1 is reported with light-responsive assembly morphology, which can be tuned from nanosphere to nanorod by ultraviolet light irradiation. The absorption spectra show that M1 molecules are transformed from closed-ring (SP) isomers into open-ring (MC) isomers and start to form H-aggregates with increasing irradiation time. Density functional theory calculations indicate that MC-MC isomers possess stronger binding energy than SP-SP isomers. The MC isomers may thus facilitate the dissociation of the SP-SP aggregates and promote the change of self-assembled morphology with the aid of stronger π-π stackings and dipole-dipole interactions. The research gives an effective method for modulating the morphology of assemblies, with great potential for applications in smart materials.


Assuntos
Nanosferas , Nanotubos , Benzopiranos/química , Raios Ultravioleta
8.
Adv Sci (Weinh) ; 10(21): e2300639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119402

RESUMO

Applications of abundant seawater in electrochemical energy conversion are constrained due to the sluggish oxygen evolution reaction and the corrosive chlorine oxidation reaction. Hence, it is imperative to develop an efficient anodic reaction alternative suitable for coupling with the cathodic counterpart. Due to a low thermodynamic oxidation potential, hydrazine oxidation reaction (HzOR) offers a unique pathway to overcome these challenges. Herein, spontaneously in situ reduced atomic scale Pd surface-confined to electrochemically prepared layered Co(OH)2 on carbon cloth is synthesized. This study reveals the hydrazine and Pd-dependent morphological evolution of Co(OH)2 and its Pd hybrids into nanoparticulate form. Unlike various layered double hydroxides, Pd integrated Co(OH)2 benefits from the contribution of Co(OH)2 as an active HzOR catalyst and the reductive support to host Pd, resulting in synergistically improved performances. Mass activities of Pd in alkaline and alkaline saline electrolyte are 11.24 and 9.83 A mgPd -1 at 200 mV, respectively, corresponding to the highest HzOR activities among noble metals. The optimized Pd hybrid demonstrates ≈6.5 times the current density relative to PtC (14.91 mA cm-2 at 200 mV) in alkaline saline water with hydrazine. These findings would be beneficial to realize high overpotential anodic alternatives and reduce over-dependence on freshwater for electrocatalysis.

9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-993732

RESUMO

Mycobacterium abscessesus (MAB) is the most common species of rapidly growing pathogenic nontuberculous mycobacteria (NTM). MAB is also an opportunistic pathogen with high drug resistance. The unique structure of cell wall enables it to exist in different forms and to undergo morphological transformation, making it the "shapeshifter of the mycobacterial world" , which facilitates its survival in natural environment in a saprophytic manner; and also facilitates its invasion into the host with long-term survival and being pathogenic. This article reviews research progress on the specific deformability of MAB and the mechanism associated with its phenotypic transformation; discusses the evolutionary characteristics of MAB to adapt environmental changes to provide reference for better understanding the biological characteristics and pathogenicity of MAB.

10.
J Imaging ; 8(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36354874

RESUMO

Brain tumors are abnormal cell growth in the brain tissues that can be cancerous or not. In any case, they could be a very aggressive disease that should be detected as early as possible. Usually, magnetic resonance imaging (MRI) is the main tool commonly adopted by neurologists and radiologists to identify and classify any possible anomalies present in the brain anatomy. In the present work, an automatic unsupervised method called Z2-γ, based on the use of adaptive finite-elements and suitable pre-processing and post-processing techniques, is introduced. The adaptive process, driven by a Zienkiewicz-Zhu type error estimator (Z2), is carried out on isotropic triangulations, while the given input images are pre-processed via nonlinear transformations (γ corrections) to enhance the ability of the error estimator to detect any relevant anomaly. The proposed methodology is able to automatically classify whether a given MR image represents a healthy or a diseased brain and, in this latter case, is able to locate the tumor area, which can be easily delineated by removing any redundancy with post-processing techniques based on morphological transformations. The method is tested on a freely available dataset achieving 0.846 of accuracy and F1 score equal to 0.88.

11.
ACS Appl Mater Interfaces ; 14(46): 52204-52215, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350758

RESUMO

A strategical approach for morphological transformation and heterojunction formation was utilized to suppress the shortcomings of uni-metal oxide electrocatalysts and enhance their bifunctionality. In situ generation of copper oxide (CuO) over the surface of manganese oxide (Mn2O3) resulted in a morphological transformation from solid spheres to hollow spherical structures due to the ion-exchange diffusion (Kirkendall effect) of Cu ions into Mn2O3 particles. This hollowness resulted in the advancement of the bifunctional electrocatalytic behavior of Mn2O3/CuO (overpotential (η10) of 280 mV for an OER and 310 mV for an HER at a current density of 10 mA/cm2) by virtue of increased exposed surface active sites aiding the adsorption of water molecules on the surface. The increased electrochemical active surface area (ECSA/Cdl = 34 mF/cm2) and reduced charge transfer resistance resulted in the formation of Mn2O3/CuO hollow spheres to achieve an approximately threefold enhancement in the turnover frequency (TOF) compared to the bare Mn2O3. The electrocatalytic efficiency of Mn2O3/CuO was further enhanced by virtue of the faster charge transfer coefficient of two-dimensional (2D) vanadyl phosphate hexahydrate (VOP) sheets deposited over its surface. This boosted the overall water splitting with attained overpotential (η10) values of 190 and 220 mV with Tafel slopes of 60 and 105 mV/decade for an OER and HER, respectively. The morphological transformation and formation of an n-p heterojunction between Mn2O3 and CuO based on their work function (φ) values evaluated from the density functional theory (DFT) calculation and the effect of the VOP overlayer for faster reaction kinetics at the electrolyte interface resulted in an ∼10-fold increment in TOF values compared to the bare counterpart.

12.
Small ; 18(48): e2204759, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285744

RESUMO

In order to artificially regulate cell behaviors, intracellular polymerization as an emerging chemical technique has attracted much attention. Yet, it is still a challenge to achieve effective intracellular polymerization to conquer tumors in the complex cellular environment. Herein, this work develops a tumor-targeting and caspase-3 responsive nanoparticle composed of a diacetylene-containing lipidated peptide amphiphile and mitochondria-targeting photosensitizer (C3), which undergoes nanoparticle-to-nanofiber transformation and efficient in situ polymerization triggered by photodynamic treatment and activation of caspase-3. The locational nanofibers on the mitochondria membranes lead to mitochondrial reactive oxygen species (mtROS) burst and self-amplified circulation, offering persistent high oxidative stress to induce cell apoptosis. This study provides a strategy for greatly enhanced antitumor therapeutic efficacy through mtROS burst and self-amplified circulation induced by intracellular transformation and in situ polymerization.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Caspase 3 , Polimerização , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Peptídeos
13.
Angew Chem Int Ed Engl ; 61(38): e202207310, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35705507

RESUMO

Circularly polarized luminescence (CPL) with tunable chirality is currently a challenging issue in the development of supramolecular nanomaterials. We herein report the formation of helical nanoribbons which grow into helical tubes through dynamic helicity inversion. For this, chiral PtII complexes of terpyridine derivatives, namely S-trans-1 and R-trans-1, with respective S- and R-alanine subunits and incorporating trans-double bonds in the alkyl chain were prepared. In DMSO/H2 O (5 : 1 v/v), S-trans-1 initially forms a fibrous self-assembled product, which then undergoes dynamic transformation into helical tubes (left-handed or M-type) through helical ribbons (right-handed or P-type). Interestingly, both helical supramolecular architectures are capable of emitting CPL signals. The metastable helical ribbons show CPL signals (glum =±4.7×10-2 ) at 570 nm. Meanwhile, the nanotubes, which are the thermodynamic products, show intense CPL signals (glum =±5.6×10-2 ) at 610 nm accompanied by helicity inversion. This study provides an efficient way to develop highly dissymmetric CPL nanomaterials by regulating the morphology of metallosupramolecular architectures.

14.
Chem Rec ; 22(6): e202200025, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35244334

RESUMO

Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.


Assuntos
Nanotubos , Nanotubos/química , Temperatura
15.
J Surg Res ; 272: 153-165, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34974331

RESUMO

BACKGROUND: The use of acellular dermal matrix on chronic diabetic wounds in clinical practice is hindered by its high cost and difficulty in application. We aimed to acquire experimental evidence on the effect of morphologically transformed acellular dermal matrix on chronic diabetic wounds and investigate how this transformation affects the wound healing mechanism. MATERIALS AND METHODS: We developed a new chronic wound model that resembles a diabetic chronic wound as it involves an open wound with partial calvarial bone exposure in diabetic rats. According to treatment materials, rats were assigned into the CONTROL, ADM, and PASTE groups. The wound healing period was subdivided into T1 and T2 (postoperative days 14 and 30, respectively). Three-staged analyses were performed using 3D camera, histological analysis, and real-time quantitative polymerase chain reaction. RESULTS: The morphologically transformed acellular dermal matrix showed a compatible treatment rate in the total wound and more rapidly reduced the initial bone exposure area. In the PASTE group, collagen scaffold appeared at a later period and expression levels of epidermal growth factor and epidermal growth factor receptor increased. CONCLUSIONS: The transformation of acellular dermal matrix into the pulverized form is thought to contribute to its non-inferior therapeutic effect compared with normal acellular dermal matrix. With respect to the mechanism, the pulverized form reduced the bone exposure area in the early stage and provided a collagen scaffold at a later period. An increase in epithelial growth factors through mechanochemical transformations along with increased contact area contribute to the enhanced healing capacity of the morphologically transformed acellular dermal matrix.


Assuntos
Derme Acelular , Diabetes Mellitus Experimental , Animais , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ratos , Cicatrização
16.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055154

RESUMO

Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.


Assuntos
Compostos Azo/química , Corantes/química , Solventes/química , Cristalografia por Raios X , Luz , Modelos Moleculares , Estrutura Molecular , Nanoestruturas
17.
Small ; 18(11): e2105009, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35060296

RESUMO

The integration of highly luminescent CsPbBr3 quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2 Br5 nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3 nanocrystals on CsPb2 Br5 nanowires is reported first by simply immersing CsPbBr3 powder into pure water, CsPbBr3- γ Xγ (X = Cl, I) nanocrystals on CsPb2 Br5 -γ Xγ nanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3 powder is first converted to CsPb2 Br5 microplatelets in water, followed by morphological transformation from CsPb2 Br5 microplatelets to nanowires, which is a kinetic dissolution-recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2 Br5 . CsPbBr3 nanocrystals are spontaneously formed on CsPb2 Br5 nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3 -γ Xγ nanocrystals while CsPb2 Br5 -γ Xγ nanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry-Perot interference modes of the nanowire cavity.

18.
J Appl Microbiol ; 132(4): 3038-3048, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34941005

RESUMO

AIMS: To assess the efficacy of the antifungal, occidiofungin, against Candida albicans and Candida tropicalis morphological transformation. METHODS AND RESULTS: Susceptibility assays and morphological data were used to demonstrate that occidiofungin effectively targets C. albicans and C. tropicalis undergoing morphological transformation. Susceptibility assays found that cell sensitivity to occidiofungin varied with the media conditions used for morphological switching. Microscopy data showed that occidiofungin inhibited hyphae formation when added at the time of morphological induction and hyphal extension when added within the first hour following hyphae induction. Immunoblot analysis demonstrated that occidiofungin addition prevented activation of Cek1p MAPK signalling. CONCLUSIONS: The data indicated that the antimicrobial compound, occidiofungin, effectively targets hyphae elongation in Candida spp. and suggests the biological target of occidiofungin is necessary for the morphological changes associated with yeast-to-hyphae switching. SIGNIFICANCE AND IMPACT OF THE STUDY: Findings from this study demonstrated that occidiofungin effectively targets the invasive growth of dimorphic Candida which suggests this compound may also inhibit the heterogenous population of cells present in a clinical setting. This presents occidiofungin as a promising candidate for the treatment of Candida associated infections.


Assuntos
Candida , Hifas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Glicopeptídeos , Peptídeos Cíclicos/farmacologia
19.
Polymers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960971

RESUMO

Coaxial electrospinning (co-electrospinning) technique has greatly expanded the universality of fabricating core-shell polymer nanofibers. However, the effect of solution miscibility on the morphology of co-electrospun products remains unclear. Herein, different cellulose acetate (CA) solutions with high solution miscibility but distinctly different electrospinnability were used to survey the effect of solution miscibility on the co-electrospinning process. The structural characterizations show that co-electrospun products are composed of nanofibers with and without the core-shell structure. This indicates that partial solution mixing occurred during the co-electrospinning process instead of absolute no-mixing or complete mixing. Importantly, the solution miscibility also shows a significant influence on the product morphology. In particular, the transformation from nanofibers to microparticles was realized with the increase of core-to-shell flow ratio during the co-electrospinning of core electrosprayable CA/dimethylacetamide (DMAc) solution and shell electrospinnable CA/acetone-DMAc (2/1, v/v) solution. Results show that the solution miscibility exerts a significant effect on not only the formation of core-shell structure but also the product morphology. This work provides a new insight for the in-depth understanding of the co-electrospinning process.

20.
Mater Sci Eng C Mater Biol Appl ; 129: 112389, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579908

RESUMO

Nanocarriers have been widely employed to deliver chemotherapeutic drugs for cancer treatment. However, the insufficient accumulation of nanoparticles in tumors is an important reason for the poor efficacy of nanodrugs. In this study, a novel drug delivery system with a self-assembled amphiphilic peptide was designed to respond specifically to alkaline phosphatase (ALP), a protease overexpressed in cancer cells. The amphiphilic peptide self-assembled into spherical and fibrous nanostructures, and it easily assembled into spherical drug-loaded peptide nanoparticles after loading of a hydrophobic chemotherapeutic drug. The cytotoxicity of the drug carriers was enhanced against tumor cells over time. These spherical nanoparticles transformed into nanofibers under the induction of ALP, leading to efficient release of the encapsulated drug. This drug delivery strategy relying on responsiveness to an enzyme present in the tumor microenvironment can enhance local drug accumulation at the tumor site. The results of live animal imaging showed that the residence time of the morphologically transformable drug-loaded peptide nanoparticles at the tumor site was prolonged in vivo, confirming their potential use in antitumor therapy. These findings can contribute to a better understanding of the influence of drug carrier morphology on intracellular retention.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA