Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298383

RESUMO

Mitochondrial transcription factor A (TFAM) is one of the widely studied but still incompletely understood mitochondrial protein, which plays a crucial role in the maintenance and transcription of mitochondrial DNA (mtDNA). The available experimental evidence is often contradictory in assigning the same function to various TFAM domains, partly owing to the limitations of those experimental systems. Recently, we developed the GeneSwap approach, which enables in situ reverse genetic analysis of mtDNA replication and transcription and is devoid of many of the limitations of the previously used techniques. Here, we utilized this approach to analyze the contributions of the TFAM C-terminal (tail) domain to mtDNA transcription and replication. We determined, at a single amino acid (aa) resolution, the TFAM tail requirements for in situ mtDNA replication in murine cells and established that tail-less TFAM supports both mtDNA replication and transcription. Unexpectedly, in cells expressing either C-terminally truncated murine TFAM or DNA-bending human TFAM mutant L6, HSP1 transcription was impaired to a greater extent than LSP transcription. Our findings are incompatible with the prevailing model of mtDNA transcription and thus suggest the need for further refinement.


Assuntos
Replicação do DNA , Proteínas Mitocondriais , Animais , Humanos , Camundongos , Replicação do DNA/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Bio Protoc ; 13(10): e4680, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37251092

RESUMO

Mitochondria play decisive roles in bioenergetics and intracellular communication. These organelles contain a circular mitochondrial DNA (mtDNA) genome that is duplicated within one to two hours by a mitochondrial replisome, independently from the nuclear replisome. mtDNA stability is regulated in part at the level of mtDNA replication. Consequently, mutations in mitochondrial replisome components result in mtDNA instability and are associated with diverse disease phenotypes, including premature aging, aberrant cellular energetics, and developmental defects. The mechanisms ensuring mtDNA replication stability are not completely understood. Thus, there remains a need to develop tools to specifically and quantifiably examine mtDNA replication. To date, methods for labeling mtDNA have relied on prolonged exposures of 5'-bromo-2'-deoxyuridine (BrdU) or 5'-ethynyl-2'-deoxyuridine (EdU). However, labeling with these nucleoside analogs for a sufficiently short time in order to monitor nascent mtDNA replication, such as under two hours, does not produce signals suited for efficient or accurate quantitative analysis. The assay system described here, termed Mitochondrial Replication Assay (MIRA), utilizes proximity ligation assay (PLA) combined with EdU-coupled Click-IT chemistry to address this limitation, thereby enabling sensitive and quantitative analysis of nascent in situ mtDNA replication with single-cell resolution. This method can be further paired with conventional immunofluorescence (IF) for multi-parameter cell analysis. By enabling monitoring nascent mtDNA prior to the complete replication of the entire mtDNA genome, this new assay system allowed the discovery of a new mitochondrial stability pathway, mtDNA fork protection. Moreover, a modification in primary antibodies application allows the adaptation of our previously described in situ protein Interactions with nascent DNA Replication Forks (SIRF) for the detection of proteins of interest to nascent mtDNA replication forks on a single molecule level (mitoSIRF). Graphical overview Schematic overview of Mitochondrial Replication Assay (MIRA). 5'-ethynyl-2'-deoxyuridine (EdU; green) incorporated in DNA is tagged with biotin (blue) using Click-IT chemistry. Subsequent proximity ligation assay (PLA, pink circles) using antibodies against biotin allows the fluorescent tagging of the nascent EdU and amplification of the signal sufficient for visualization by standard immunofluorescence. PLA signals outside the nucleus denote mitochondrial DNA (mtDNA) signals. Ab, antibody. In in situ protein interactions with nascent DNA replication forks (mitoSIRF), one of the primary antibodies is directed against a protein of interest, while the other detects nascent biotinylated EdU, thus enabling in situ protein interactions with nascent mtDNA.

3.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497015

RESUMO

The ability of animal orthologs of human mitochondrial transcription factor A (hTFAM) to support the replication of human mitochondrial DNA (hmtDNA) does not follow a simple pattern of phylogenetic closeness or sequence similarity. In particular, TFAM from chickens (Gallus gallus, chTFAM), unlike TFAM from the "living fossil" fish coelacanth (Latimeria chalumnae), cannot support hmtDNA replication. Here, we implemented the recently developed GeneSwap approach for reverse genetic analysis of chTFAM to obtain insights into this apparent contradiction. By implementing limited "humanization" of chTFAM focused either on amino acid residues that make DNA contacts, or the ones with significant variances in side chains, we isolated two variants, Ch13 and Ch22. The former has a low mtDNA copy number (mtCN) but robust respiration. The converse is true of Ch22. Ch13 and Ch22 complement each other's deficiencies. Opposite directionalities of changes in mtCN and respiration were also observed in cells expressing frog TFAM. This led us to conclude that TFAM's contributions to mtDNA replication and respiratory chain biogenesis are genetically separable. We also present evidence that TFAM residues that make DNA contacts play the leading role in mtDNA replication. Finally, we present evidence for a novel mode of regulation of the respiratory chain biogenesis by regulating the supply of rRNA subunits.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Mitocondriais , Fatores de Transcrição , Animais , Humanos , Galinhas/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cells ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883613

RESUMO

The unavailability of tractable reverse genetic analysis approaches represents an obstacle to a better understanding of mitochondrial DNA replication. Here, we used CRISPR-Cas9 mediated gene editing to establish the conditional viability of knockouts in the key proteins involved in mtDNA replication. This observation prompted us to develop a set of tools for reverse genetic analysis in situ, which we called the GeneSwap approach. The technique was validated by identifying 730 amino acid (aa) substitutions in the mature human TFAM that are conditionally permissive for mtDNA replication. We established that HMG domains of TFAM are functionally independent, which opens opportunities for engineering chimeric TFAMs with customized properties for studies on mtDNA replication, mitochondrial transcription, and respiratory chain function. Finally, we present evidence that the HMG2 domain plays the leading role in TFAM species-specificity, thus indicating a potential pathway for TFAM-mtDNA evolutionary co-adaptations.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Genética Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Cell Metab ; 29(1): 78-90.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30174309

RESUMO

Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease.


Assuntos
Cardiomiopatias/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Mutação
6.
Mitochondrion ; 30: 126-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26923168

RESUMO

Mutations in genes coding for mitochondrial helicases such as TWINKLE and DNA2 are involved in mitochondrial myopathies with mtDNA instability in both human and mouse. We show that inactivation of Pif1, a third member of the mitochondrial helicase family, causes a similar phenotype in mouse. pif1-/- animals develop a mitochondrial myopathy with respiratory chain deficiency. Pif1 inactivation is responsible for a deficiency to repair oxidative stress-induced mtDNA damage in mouse embryonic fibroblasts that is improved by complementation with mitochondrial isoform mPif1(67). These results open new perspectives for the exploration of patients with mtDNA instability disorders.


Assuntos
DNA Helicases/antagonistas & inibidores , Inativação Gênica , Miopatias Mitocondriais/genética , Animais , Células Cultivadas , Fibroblastos/fisiologia , Camundongos , Camundongos Knockout , Doenças Mitocondriais
7.
EMBO Mol Med ; 8(1): 58-72, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26666268

RESUMO

CHCHD10-related diseases include mitochondrial DNA instability disorder, frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) clinical spectrum, late-onset spinal motor neuropathy (SMAJ), and Charcot-Marie-Tooth disease type 2 (CMT2). Here, we show that CHCHD10 resides with mitofilin, CHCHD3 and CHCHD6 within the "mitochondrial contact site and cristae organizing system" (MICOS) complex. CHCHD10 mutations lead to MICOS complex disassembly and loss of mitochondrial cristae with a decrease in nucleoid number and nucleoid disorganization. Repair of the mitochondrial genome after oxidative stress is impaired in CHCHD10 mutant fibroblasts and this likely explains the accumulation of deleted mtDNA molecules in patient muscle. CHCHD10 mutant fibroblasts are not defective in the delivery of mitochondria to lysosomes suggesting that impaired mitophagy does not contribute to mtDNA instability. Interestingly, the expression of CHCHD10 mutant alleles inhibits apoptosis by preventing cytochrome c release.


Assuntos
Apoptose/genética , Genoma Mitocondrial , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Alelos , Linhagem Celular , Citocromos c/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Mutação , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA