Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Comput Struct Biotechnol J ; 23: 2507-2515, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974887

RESUMO

The incidence of early-onset colorectal cancer (EOCRC) has increased significantly worldwide. Uncovering biomarkers that are unique to EOCRC is of great importance to facilitate the prevention and detection of this growing cancer subtype. Although efforts have been made in the data curation about CRC, there is no integrated platform that gives access to data specifically related to young CRC patients. Here, we constructed a user-friendly open integrated resource called CRCDB (URL: http://crcdb-hust.com) which contains multi-omics data of 785 EOCRC, 4898 late-onset CRCs (LOCRC), and 1110 normal control samples from tissue, whole blood, platelets, and serum exosomes. CRCDB manages the differential analysis, survival analysis, co-expression analysis, and immune cell infiltration comparison analysis results in different CRC groups. Meta-analysis results were also provided for users for further data interpretation. Using the resource in CRCDB, we identified that genes associated with the metabolic process were less expressed in EOCRC patients, while up regulated genes most associated with the mitosis process might play an important role in the molecular pathogenesis of LOCRC. Survival-related genes were most enriched in oxidoreduction pathways in EOCRC while in immune-related pathways in LOCRC. With all the data gathered and processed, we anticipate that CRCDB could be a practical data mining platform to help explore potential applications of omics data and develop effective prevention and therapeutic strategies for the specific group of CRC patients.

2.
Comput Biol Chem ; 112: 108150, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018587

RESUMO

OBJECTIVES: Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Understanding the molecular mechanisms underlying tumor progression is of great clinical significance. This study aims to identify novel molecular markers associated with LUAD subtypes, with the goal of improving the precision of LUAD subtype classification. Additionally, optimization efforts are directed towards enhancing insights from the perspective of patient survival analysis. MATERIALS AND METHODS: We propose an innovative feature-selection approach that focuses on LUAD classification, which is comprehensive and robust. The proposed method integrates multi-omics data from The Cancer Genome Atlas (TCGA) and leverages a synergistic combination of max-relevance and min-redundancy, least absolute shrinkage and selection operator, and Boruta algorithms. These selected features were deployed in six machine-learning classifiers: logistic regression, random forest, support vector machine, naive Bayes, k-Nearest Neighbor, and XGBoost. RESULTS: The proposed approach achieved an area under the receiver operating characteristic curve (AUC) of 0.9958 for LR. Notably, the accuracy and AUC of a composite model incorporating copy number, methylation, as well as RNA- sequencing data for expression of exons, genes, and miRNA mature strands surpassed the accuracy and AUC metrics of models with single-omics data or other multi-omics combinations. Survival analyses, revealed the SVM classifier to elicit optimal classification, outperforming that achieved by TCGA. To enhance model interpretability, SHapley Additive exPlanations (SHAP) values were utilized to elucidate the impact of each feature on the predictions. Gene Ontology (GO) enrichment analysis identified significant biological processes, molecular functions, and cellular components associated with LUAD subtypes. CONCLUSION: In summary, our feature selection process, based on TCGA multi-omics data and combined with multiple machine learning classifiers, proficiently identifies molecular subtypes of lung adenocarcinoma and their corresponding significant genes. Our method could enhance the early detection and diagnosis of LUAD, expedite the development of targeted therapies and, ultimately, lengthen patient survival.

3.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956648

RESUMO

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Assuntos
Envelhecimento Cognitivo , Metilação de DNA , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Metilação de DNA/genética , Feminino , Masculino , Herança Multifatorial/genética , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Fatores de Risco , Imageamento por Ressonância Magnética , Envelhecimento/genética , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Estratificação de Risco Genético
4.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3414-3420, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041113

RESUMO

Based on the systematic deconstruction of multi-dimensional and multi-target biological networks, modular pharmacology explains the complex mechanism of diseases and the interactions of multi-target drugs. It has made progress in the fields of pathogenesis of disease, biological basis of disease and traditional Chinese medicine(TCM) syndrome, pharmacological mechanism of multi-target herbs, compatibility of formulas, and discovery of new drug of TCM compound. However, the complexity of multi-omics data and biological networks brings challenges to the modular deconstruction and analysis of the drug networks. Here, we constructed the "Computing Platform for Modular Pharmacology" online analysis system, which can implement the function of network construction, module identification, module discriminant analysis, hub-module analysis, intra-module and inter-module relationship analysis, and topological visualization of network based on quantitative expression profiles and protein-protein interaction(PPI) data. This tool provides a powerful tool for the research on complex diseases and multi-target drug mechanisms by means of modular pharmacology. The platform may have broad range of application in disease modular identification and correlation mechanism, interpretation of scientific principles of TCM, analysis of complex mechanisms of TCM and formulas, and discovery of multi-target drugs.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Biologia Computacional/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Farmacologia/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos
5.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985929

RESUMO

Recent advances in sequencing, mass spectrometry, and cytometry technologies have enabled researchers to collect multiple 'omics data types from a single sample. These large datasets have led to a growing consensus that a holistic approach is needed to identify new candidate biomarkers and unveil mechanisms underlying disease etiology, a key to precision medicine. While many reviews and benchmarks have been conducted on unsupervised approaches, their supervised counterparts have received less attention in the literature and no gold standard has emerged yet. In this work, we present a thorough comparison of a selection of six methods, representative of the main families of intermediate integrative approaches (matrix factorization, multiple kernel methods, ensemble learning, and graph-based methods). As non-integrative control, random forest was performed on concatenated and separated data types. Methods were evaluated for classification performance on both simulated and real-world datasets, the latter being carefully selected to cover different medical applications (infectious diseases, oncology, and vaccines) and data modalities. A total of 15 simulation scenarios were designed from the real-world datasets to explore a large and realistic parameter space (e.g. sample size, dimensionality, class imbalance, effect size). On real data, the method comparison showed that integrative approaches performed better or equally well than their non-integrative counterpart. By contrast, DIABLO and the four random forest alternatives outperform the others across the majority of simulation scenarios. The strengths and limitations of these methods are discussed in detail as well as guidelines for future applications.


Assuntos
Biologia Computacional , Humanos , Biologia Computacional/métodos , Algoritmos , Genômica/métodos , Genômica/estatística & dados numéricos , Multiômica
6.
Front Immunol ; 15: 1442722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081317

RESUMO

Background: Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods: We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results: Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion: This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , N-Acetilglucosaminiltransferases , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Animais , Humanos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Glicosiltransferases/genética , Imunoterapia/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
7.
Bioengineering (Basel) ; 11(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927823

RESUMO

Gene pathways and gene-regulatory networks are used to describe the causal relationship between genes, based on biological experiments. However, many genes are still to be studied to define novel pathways. To address this, a gene-clustering algorithm has been used to group correlated genes together, based on the similarity of their gene expression level. The existing methods cluster genes based on only one type of omics data, which ignores the information from other types. A large sample size is required to achieve an accurate clustering structure for thousands of genes, which can be challenging due to the cost of multi-omics data. Meta-analysis has been used to aggregate the data from multiple studies and improve the analysis results. We propose a computationally efficient meta-analytic gene-clustering algorithm that combines multi-omics datasets from multiple studies, using the fixed effects linear models and a modified weighted correlation network analysis framework. The simulation study shows that the proposed method outperforms existing single omic-based clustering approaches when multi-omics data and/or multiple studies are available. A real data example demonstrates that our meta-analytic method outperforms single-study based methods.

8.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783706

RESUMO

RNA Polymerase II (Pol II) transcriptional elongation pausing is an integral part of the dynamic regulation of gene transcription in the genome of metazoans. It plays a pivotal role in many vital biological processes and disease progression. However, experimentally measuring genome-wide Pol II pausing is technically challenging and the precise governing mechanism underlying this process is not fully understood. Here, we develop RP3 (RNA Polymerase II Pausing Prediction), a network regularized logistic regression machine learning method, to predict Pol II pausing events by integrating genome sequence, histone modification, gene expression, chromatin accessibility, and protein-protein interaction data. RP3 can accurately predict Pol II pausing in diverse cellular contexts and unveil the transcription factors that are associated with the Pol II pausing machinery. Furthermore, we utilize a forward feature selection framework to systematically identify the combination of histone modification signals associated with Pol II pausing. RP3 is freely available at https://github.com/AMSSwanglab/RP3.


Assuntos
Código das Histonas , RNA Polimerase II , RNA Polimerase II/metabolismo , Humanos , Elongação da Transcrição Genética , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Aprendizado de Máquina , Animais
10.
Comput Biol Med ; 176: 108568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744009

RESUMO

Discovery of the cancer type specific-driver genes is important for understanding the molecular mechanisms of each cancer type and for providing proper treatment. Recently, graph deep learning methods became widely used in finding cancer-driver genes. However, previous methods had limited performance in individual cancer types due to a small number of cancer-driver genes used in training and biases toward the cancer-driver genes used in training the models. Here, we introduce a novel pipeline, CancerGATE that predicts the cancer-driver genes using graph attention autoencoder (GATE) to learn in a self-supervised manner and can be applied to each of the cancer types. CancerGATE utilizes biological network topology and multi-omics data from 15 types of cancer of 20,079 samples from the cancer genome atlas (TCGA). Attention coefficients calculated in the model are used to prioritize cancer-driver genes by comparing coefficients of cancer and normal contexts. CancerGATE shows a higher AUPRC with a difference ranging from 1.5 % to 36.5 % compared to the previous graph deep learning models in each cancer type. We also show that CancerGATE is free from the bias toward cancer-driver genes used in training, revealing mechanisms of the cancer-driver genes in specific cancer types. Finally, we propose novel cancer-driver gene candidates that could be therapeutic targets for specific cancer types.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Neoplasias/genética , Biologia Computacional/métodos , Software
11.
Cell Rep Methods ; 4(6): 100781, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761803

RESUMO

We present an innovative strategy for integrating whole-genome-wide multi-omics data, which facilitates adaptive amalgamation by leveraging hidden layer features derived from high-dimensional omics data through a multi-task encoder. Empirical evaluations on eight benchmark cancer datasets substantiated that our proposed framework outstripped the comparative algorithms in cancer subtyping, delivering superior subtyping outcomes. Building upon these subtyping results, we establish a robust pipeline for identifying whole-genome-wide biomarkers, unearthing 195 significant biomarkers. Furthermore, we conduct an exhaustive analysis to assess the importance of each omic and non-coding region features at the whole-genome-wide level during cancer subtyping. Our investigation shows that both omics and non-coding region features substantially impact cancer development and survival prognosis. This study emphasizes the potential and practical implications of integrating genome-wide data in cancer research, demonstrating the potency of comprehensive genomic characterization. Additionally, our findings offer insightful perspectives for multi-omics analysis employing deep learning methodologies.


Assuntos
Biomarcadores Tumorais , Genômica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/classificação , Genômica/métodos , Biomarcadores Tumorais/genética , Algoritmos , Prognóstico , Estudo de Associação Genômica Ampla/métodos , Biologia Computacional/métodos , Genoma Humano/genética , Multiômica
12.
Front Neurosci ; 18: 1277187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562299

RESUMO

Introduction: Growing evidence highlights a potential genetic overlap between Alzheimer's disease (AD) and Parkinson's disease (PD); however, the role of the PD risk variant rs6430538 in AD remains unclear. Methods: In Stage 1, we investigated the risk associated with the rs6430538 C allele in seven large-scale AD genome-wide association study (GWAS) cohorts. In Stage 2, we performed expression quantitative trait loci (eQTL) analysis to calculate the cis-regulated effect of rs6430538 on TMEM163 in both AD and neuropathologically normal samples. Stage 3 involved evaluating the differential expression of TMEM163 in 4 brain tissues from AD cases and controls. Finally, in Stage 4, we conducted a transcriptome-wide association study (TWAS) to identify any association between TMEM163 expression and AD. Results: The results showed that genetic variant rs6430538 C allele might increase the risk of AD. eQTL analysis revealed that rs6430538 up-regulated TMEM163 expression in AD brain tissue, but down-regulated its expression in normal samples. Interestingly, TMEM163 showed differential expression in entorhinal cortex (EC) and temporal cortex (TCX). Furthermore, the TWAS analysis indicated strong associations between TMEM163 and AD in various tissues. Discussion: In summary, our findings suggest that rs6430538 may influence AD by regulating TMEM163 expression. These discoveries may open up new opportunities for therapeutic strategies targeting AD.

13.
Brief Funct Genomics ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600757

RESUMO

Multi-omics data play a crucial role in precision medicine, mainly to understand the diverse biological interaction between different omics. Machine learning approaches have been extensively employed in this context over the years. This review aims to comprehensively summarize and categorize these advancements, focusing on the integration of multi-omics data, which includes genomics, transcriptomics, proteomics and metabolomics, alongside clinical data. We discuss various machine learning techniques and computational methodologies used for integrating distinct omics datasets and provide valuable insights into their application. The review emphasizes both the challenges and opportunities present in multi-omics data integration, precision medicine and patient stratification, offering practical recommendations for method selection in various scenarios. Recent advances in deep learning and network-based approaches are also explored, highlighting their potential to harmonize diverse biological information layers. Additionally, we present a roadmap for the integration of multi-omics data in precision oncology, outlining the advantages, challenges and implementation difficulties. Hence this review offers a thorough overview of current literature, providing researchers with insights into machine learning techniques for patient stratification, particularly in precision oncology. Contact:  anirban@klyuniv.ac.in.

14.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557672

RESUMO

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Early-stage patients have a 30-50% probability of metastatic recurrence after surgical treatment. Here, we propose a new computational framework, Interpretable Biological Pathway Graph Neural Networks (IBPGNET), based on pathway hierarchy relationships to predict LUAD recurrence and explore the internal regulatory mechanisms of LUAD. IBPGNET can integrate different omics data efficiently and provide global interpretability. In addition, our experimental results show that IBPGNET outperforms other classification methods in 5-fold cross-validation. IBPGNET identified PSMC1 and PSMD11 as genes associated with LUAD recurrence, and their expression levels were significantly higher in LUAD cells than in normal cells. The knockdown of PSMC1 and PSMD11 in LUAD cells increased their sensitivity to afatinib and decreased cell migration, invasion and proliferation. In addition, the cells showed significantly lower EGFR expression, indicating that PSMC1 and PSMD11 may mediate therapeutic sensitivity through EGFR expression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores ErbB/genética , Proliferação de Células
15.
Front Immunol ; 15: 1334479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680491

RESUMO

Background: The immune microenvironment assumes a significant role in the pathogenesis of osteoarthritis (OA). However, the current biomarkers for the diagnosis and treatment of OA are not satisfactory. Our study aims to identify new OA immune-related biomarkers to direct the prevention and treatment of OA using multi-omics data. Methods: The discovery dataset integrated the GSE89408 and GSE143514 datasets to identify biomarkers that were significantly associated with the OA immune microenvironment through multiple machine learning methods and weighted gene co-expression network analysis (WGCNA). The identified signature genes were confirmed using two independent validation datasets. We also performed a two-sample mendelian randomization (MR) study to generate causal relationships between biomarkers and OA using OA genome-wide association study (GWAS) summary data (cases n = 24,955, controls n = 378,169). Inverse-variance weighting (IVW) method was used as the main method of causal estimates. Sensitivity analyses were performed to assess the robustness and reliability of the IVW results. Results: Three signature genes (FCER1G, HLA-DMB, and HHLA-DPA1) associated with the OA immune microenvironment were identified as having good diagnostic performances, which can be used as biomarkers. MR results showed increased levels of FCER1G (OR = 1.118, 95% CI 1.031-1.212, P = 0.041), HLA-DMB (OR = 1.057, 95% CI 1.045 -1.069, P = 1.11E-21) and HLA-DPA1 (OR = 1.030, 95% CI 1.005-1.056, P = 0.017) were causally and positively associated with the risk of developing OA. Conclusion: The present study identified the 3 potential immune-related biomarkers for OA, providing new perspectives for the prevention and treatment of OA. The MR study provides genetic support for the causal effects of the 3 biomarkers with OA and may provide new insights into the molecular mechanisms leading to the development of OA.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/diagnóstico , Transcriptoma , Predisposição Genética para Doença , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único
16.
Front Pharmacol ; 15: 1389440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681202

RESUMO

Background: Glioblastoma (GBM) is a common and highly aggressive brain tumor with a poor prognosis for patients. It is urgently needed to identify potential small molecule drugs that specifically target key genes associated with GBM development and prognosis. Methods: Differentially expressed genes (DEGs) between GBM and normal tissues were obtained by data mining the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Gene function annotation was performed to investigate the potential functions of the DEGs. A protein-protein interaction (PPI) network was constructed to explore hub genes associated with GBM. Bioinformatics analysis was used to screen the potential therapeutic and prognostic genes. Finally, potential small molecule drugs were predicted using the DGIdb database and verified using chemical informatics methods including absorption, distribution, metabolism, excretion, toxicity (ADMET), and molecular docking studies. Results: A total of 429 DEGs were identified, of which 19 hub genes were obtained through PPI analysis. The hub genes were confirmed as potential therapeutic targets by functional enrichment and mRNA expression. Survival analysis and protein expression confirmed centromere protein A (CENPA) as a prognostic target in GBM. Four small molecule drugs were predicted for the treatment of GBM. Conclusion: Our study suggests some promising potential therapeutic targets and small molecule drugs for the treatment of GBM, providing new ideas for further research and targeted drug development.

17.
Cardiovasc Res ; 120(8): 927-942, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38661182

RESUMO

AIMS: In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS: We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION: Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos Endogâmicos C57BL , Proteômica , Síndrome do Nó Sinusal , Nó Sinoatrial , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiopatologia , Fosforilação , Síndrome do Nó Sinusal/metabolismo , Síndrome do Nó Sinusal/fisiopatologia , Síndrome do Nó Sinusal/genética , Masculino , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Inflamação/patologia , Frequência Cardíaca , Canais de Potássio/metabolismo , Canais de Potássio/genética , Simulação por Computador , Modelos Cardiovasculares , Humanos , Transdução de Sinais , Potenciais de Ação
18.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678587

RESUMO

Deep learning-based multi-omics data integration methods have the capability to reveal the mechanisms of cancer development, discover cancer biomarkers and identify pathogenic targets. However, current methods ignore the potential correlations between samples in integrating multi-omics data. In addition, providing accurate biological explanations still poses significant challenges due to the complexity of deep learning models. Therefore, there is an urgent need for a deep learning-based multi-omics integration method to explore the potential correlations between samples and provide model interpretability. Herein, we propose a novel interpretable multi-omics data integration method (DeepKEGG) for cancer recurrence prediction and biomarker discovery. In DeepKEGG, a biological hierarchical module is designed for local connections of neuron nodes and model interpretability based on the biological relationship between genes/miRNAs and pathways. In addition, a pathway self-attention module is constructed to explore the correlation between different samples and generate the potential pathway feature representation for enhancing the prediction performance of the model. Lastly, an attribution-based feature importance calculation method is utilized to discover biomarkers related to cancer recurrence and provide a biological interpretation of the model. Experimental results demonstrate that DeepKEGG outperforms other state-of-the-art methods in 5-fold cross validation. Furthermore, case studies also indicate that DeepKEGG serves as an effective tool for biomarker discovery. The code is available at https://github.com/lanbiolab/DeepKEGG.


Assuntos
Biomarcadores Tumorais , Aprendizado Profundo , Recidiva Local de Neoplasia , Humanos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/genética , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Genômica/métodos , Multiômica
19.
Front Genet ; 15: 1363896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444760

RESUMO

Introduction: As the evaluation indices, cancer grading and subtyping have diverse clinical, pathological, and molecular characteristics with prognostic and therapeutic implications. Although researchers have begun to study cancer differentiation and subtype prediction, most of relevant methods are based on traditional machine learning and rely on single omics data. It is necessary to explore a deep learning algorithm that integrates multi-omics data to achieve classification prediction of cancer differentiation and subtypes. Methods: This paper proposes a multi-omics data fusion algorithm based on a multi-view graph neural network (MVGNN) for predicting cancer differentiation and subtype classification. The model framework consists of a graph convolutional network (GCN) module for learning features from different omics data and an attention module for integrating multi-omics data. Three different types of omics data are used. For each type of omics data, feature selection is performed using methods such as the chi-square test and minimum redundancy maximum relevance (mRMR). Weighted patient similarity networks are constructed based on the selected omics features, and GCN is trained using omics features and corresponding similarity networks. Finally, an attention module integrates different types of omics features and performs the final cancer classification prediction. Results: To validate the cancer classification predictive performance of the MVGNN model, we conducted experimental comparisons with traditional machine learning models and currently popular methods based on integrating multi-omics data using 5-fold cross-validation. Additionally, we performed comparative experiments on cancer differentiation and its subtypes based on single omics data, two omics data, and three omics data. Discussion: This paper proposed the MVGNN model and it performed well in cancer classification prediction based on multiple omics data.

20.
BMC Bioinformatics ; 25(1): 132, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539064

RESUMO

BACKGROUND: Classifying breast cancer subtypes is crucial for clinical diagnosis and treatment. However, the early symptoms of breast cancer may not be apparent. Rapid advances in high-throughput sequencing technology have led to generating large number of multi-omics biological data. Leveraging and integrating the available multi-omics data can effectively enhance the accuracy of identifying breast cancer subtypes. However, few efforts focus on identifying the associations of different omics data to predict the breast cancer subtypes. RESULTS: In this paper, we propose a differential sparse canonical correlation analysis network (DSCCN) for classifying the breast cancer subtypes. DSCCN performs differential analysis on multi-omics expression data to identify differentially expressed (DE) genes and adopts sparse canonical correlation analysis (SCCA) to mine highly correlated features between multi-omics DE-genes. Meanwhile, DSCCN uses multi-task deep learning neural network separately to train the correlated DE-genes to predict breast cancer subtypes, which spontaneously tackle the data heterogeneity problem in integrating multi-omics data. CONCLUSIONS: The experimental results show that by mining the associations among multi-omics data, DSCCN is more capable of accurately classifying breast cancer subtypes than the existing methods.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Multiômica , Análise de Correlação Canônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA