Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(4): 85, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949186

RESUMO

A jet nebulizer sprays a fine mist or aerosol directly into the lungs to reduce inflammation, expand airways, and make breathing easier for respiratory patients. Asthma, COPD, emphysema, and cystic fibrosis are treated with jet nebulizers. They are chosen over other nebulizers for their shorter treatment time and wider medication compatibility. For mechanically ventilated patients, jet nebulizers humidify oxygen to provide bronchodilators, antibiotics, and other respiratory medications. Additionally, they treat pneumonia, bronchitis, and other lung infections. Aerosol therapy requires medical jet nebulizers. However, experiment setup is time-consuming and challenging to enhance smaller droplet output. The study is aimed at enhancing the nebulizer and process parameters using numerical simulation and comparing the results to experimental data from the Malvern Spraytec™ laser diffraction system. This numerical model improves nebulization knowledge and predicts process parameters that affect output. Ansys Fluent was used to analyze a Creo-designed jet nebulizer solid model. The Spraytec™ experimental method was utilized to characterize fluticasone propionate's aerosol output and build the best nebulizer. Laser diffraction and computational fluid dynamics (CFD) analysis measured the nebulizer aerosol output. Comparing particle size data between 2 and 5 µm. The results are similar, with a difference of 4.20%. Taguchi optimization found the optimal process parameter, and a conformation test enhanced the process parameter. The nebulizer generates 8.57% more fluticasone propionate at optimal particle size. The optimized nebulizer generates aerosols reliably and speeds up patient recovery.


Assuntos
Nebulizadores e Vaporizadores , Aerossóis e Gotículas Respiratórios , Humanos , Fluticasona , Broncodilatadores , Administração por Inalação , Aerossóis , Desenho de Equipamento , Tamanho da Partícula
2.
Magn Reson Chem ; 53(9): 735-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25855560

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids. Here, a new form of NMR spectroscopy, developed in 2012, termed comprehensive multiphase (CMP)-NMR is applied for plant analysis. The technology composes all aspects of solution, gel, and solid-state NMR into a single NMR probe such that all components in all phases in native unaltered samples can be studied and differentiated in situ. The technology is evaluated using wild-type Arabidopsis thaliana and the cellulose-deficient mutant ectopic lignification1 (eli1) as examples. Using CMP-NMR to study intact samples eliminated the bias introduced by extraction methods and enabled the acquisition of a more complete structural and metabolic profile; thus, CMP-NMR revealed molecular differences between wild type (WT) and eli1 that could be overlooked by conventional methods. Methanol, fatty acids and/or lipids, glutamine, phenylalanine, starch, and nucleic acids were more abundant in eli1 than in WT. Pentaglycine was present in A. thaliana seedlings and more abundant in eli1 than in WT.


Assuntos
Arabidopsis/metabolismo , Celulose/metabolismo , Genes de Plantas , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Plântula/metabolismo , Arabidopsis/genética , Parede Celular/química , Parede Celular/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Deleção de Genes , Glutamina/análise , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Metanol/análise , Metanol/metabolismo , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , Fenilalanina/análise , Fenilalanina/metabolismo , Células Vegetais/química , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Amido/análise , Amido/metabolismo , Água/análise , Água/metabolismo
3.
J Res Natl Inst Stand Technol ; 109(1): 99-106, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-27366599

RESUMO

The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe(2+)/Fe(3+) charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and ß-CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA