Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Meas ; 45(9)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39231477

RESUMO

Objective.Accurate prediction of unmeasured muscle excitations can reduce the required wearable surface electromyography (sEMG) sensors, which is a critical factor in the study of physiological measurement. Synergy extrapolation uses synergy excitations as building blocks to reconstruct muscle excitations. However, the practical application of synergy extrapolation is still limited as the extrapolation process utilizes unmeasured muscle excitations it seeks to reconstruct. This paper aims to propose and derive methods to provide an avenue for the practical application of synergy extrapolation with non-negative matrix factorization (NMF) methods.Approach.Specifically, a tunable Gaussian-Laplacian mixture distribution NMF (GLD-NMF) method and related multiplicative update rules are derived to yield appropriate synergy excitations for extrapolation. Furthermore, a template-based extrapolation structure (TBES) is proposed to extrapolate unmeasured muscle excitations based on synergy weighting matrix templates totally extracted from measured sEMG datasets, improving the extrapolation performance. Moreover, we applied the proposed GLD-NMF method and TBES to selected muscle excitations acquired from a series of single-leg stance tests, walking tests and upper limb reaching tests.Main results.Experimental results show that the proposed GLD-NMF and TBES could extrapolate unmeasured muscle excitations accurately. Moreover, introducing synergy weighting matrix templates could decrease the number of sEMG sensors in a series of experiments. In addition, verification results demonstrate the feasibility of applying synergy extrapolation with NMF methods.Significance.With the TBES method, synergy extrapolation could play a significant role in reducing data dimensions of sEMG sensors, which will improve the portability of sEMG sensors-based systems and promotes applications of sEMG signals in human-machine interfaces scenarios.


Assuntos
Eletromiografia , Humanos , Processamento de Sinais Assistido por Computador , Músculo Esquelético/fisiologia
2.
Sports (Basel) ; 12(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39195586

RESUMO

External motivational stimuli have been shown to improve athletic performance. However, the neurophysiological mechanisms underlying this improvement remain poorly understood. This randomized crossover study investigated the effects of music and verbal encouragement on measures of muscle excitation and myoelectric manifestations of fatigue in the biceps brachii and brachioradialis muscles during an endurance task. Fifteen untrained (mean age 29.57 ± 2.77 years) and 13 trained individuals (mean age 32.92 ± 2.90 years) were included. The endurance task, performed to exhaustion, consisted of keeping the dominant arm flexed to 90 degrees while holding a dumbbell loaded to 80% of 1RM with a supine grip in three randomized conditions: standard, with self-selected music, and with verbal encouragement. The untrained subjects showed an increase in task duration of 15.26% (p < 0.003) with music and 15.85% (p < 0.002) with verbal encouragement compared to the condition without external stimuli. There were no significant differences in the myoelectric manifestations of fatigue between the different conditions. Regarding the muscle excitation metrics, although the mean amplitude, peak value, and area under the curve remained unchanged across conditions, a significant reduction in the trend coefficient, indicating motor unit recruitment over time, was observed with both music (biceps brachii: -10.39%, p < 0.001; brachioradialis: -9.40%, p < 0.001) and verbal encouragement (biceps brachii: -7.61%, p < 0.001; brachioradialis: -6.51%, p < 0.001) compared to the standard condition. For the trained participants, no significant differences were observed between conditions in terms of task duration and outcome measures related to muscle excitation and myoelectric manifestations of fatigue, suggesting the possible presence of a ceiling effect on motivation. These results highlight the important role of external motivational stimuli, such as music and verbal encouragement, in improving task performance in untrained subjects, probably through more effective and efficient recruitment of motor units.

3.
J Sports Sci Med ; 22(4): 778-789, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045750

RESUMO

The purpose was to compare the electromyographic (EMG) activity of the Hang Power Clean (HPC) and Hang Power Snatch (HPS) with the Hang Clean Pull (HCP) and Hang Snatch Pull (HSP). Additionally, the influence of weightlifting expertise (beginner, advanced and elite) on EMG activity was analyzed. Twenty-seven weightlifters (beginner: n = 11, age: 23.9 ± 3.2 years, bodyweight: 75.7 ± 10.5 kg; advanced: n = 10, age: 24.8 ± 4.5 years, bodyweight: 69.4 ± 13.9 kg; elite: n = 6, age: 25.5 ± 5.2 years, bodyweight: 75.5 ± 12.5 kg) participated in this study. Participants performed two repetitions of HPC, HPS, HCP, and HSP at 50%, 70%, and 90% 1RM, respectively. The EMG activity of vastus lateralis (VL), gluteus maximus (GM), erector spinae (ES), rectus abdominis (RA) and trapezius (TZ) was recorded and normalized to the maximum voluntary isometric contraction (MVIC) of each muscle. There were significant differences in RA and ES EMG activity at 70% and 90% 1RM during HPC compared to HCP in the beginner group (p < 0.05, Hedges g = 0.50-1.06). Significant greater ES activity was observed in the beginner, advanced, and elite groups (p < 0.05, g = 0.27-0.98) during the HPS when compared to the HSP at 50-90% 1RM. TZ muscle activity was significantly greater at 50% and 70% 1RM in the HCP compared to the HPC in the elite group (p < 0.05, g = 0.61-1.08), while the beginner group reached significance only at 50% 1RM favoring HPC (p < 0.05, g = 0.38). Moreover, the EMG activity of the TZ during the HSP and HPS was significantly different only at 50% 1RM in the elite group and favored HSP (p < 0.05, g = 0.27). No differences were observed between the levels of weightlifting expertise. Based upon the results of this study, the overall pattern of EMG activity of the predominant muscles involved in HPC/HPS and the corresponding weightlifting pulling derivatives, apart from the stabilizing muscle (RA and ES), is similar at higher intensities (>70% 1RM) and expertise does not influence muscle activity.


Assuntos
Treinamento Resistido , Humanos , Adulto Jovem , Adulto , Treinamento Resistido/métodos , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Exercício Físico/fisiologia , Nádegas
4.
J Hum Kinet ; 87: 23-34, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37229415

RESUMO

This study aims to compare muscle activity in the pectoralis major, anterior deltoid, and triceps brachii in the horizontal bench press exercise with a prone grip at 150% and 50% of the biacromial width and the seated chest press exercise with two types of grips (a neutral grip at ~150% of the biacromial width and a prone grip at ~200% of the biacromial width). Twenty physically active adults performed a set of 8 repetitions at 60% of the one repetition maximum. The results showed that the clavicular portion of the pectoralis major had significantly greater muscle activity in the seated chest press exercise with a neutral grip (~30% of the maximal voluntary isometric contraction (MVIC)) than in the lying bench press exercise with a prone grip at 150% of the biacromial width (~25% MVIC). The muscle activity of the anterior deltoid was not significantly different across any exercise or grip evaluated (~24% MVIC). The muscle activity of the triceps brachii was significantly higher in the lying bench press exercise with a grip at 50% biacromial width (~16% MVIC) than at 150% of the biacromial width (~12% MVIC). In conclusion, all exercises and grips showed similar muscle activity, and the selection of these exercises should not be based exclusively on the grounds of muscle activation but rather on the load capacity lifted, the level of technique of the participant, and/or the transference to the specific sporting discipline or event.

5.
J Electromyogr Kinesiol ; 70: 102770, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004380

RESUMO

PURPOSE: To compare the excitation of the six different segments of the latissimus dorsi (LD) while reaching different distances and in different directions in stroke patients and healthy controls. METHOD: Surface electromyography was used to measure the excitation of the LD segments (LD1-LD6) in 12 chronic stroke patients and 11 healthy controls during reaching tasks. A target was placed in the sagittal and scapular planes at arm's length, 125% of arm's length, and maximum reaching distance. The clinical trial registration number is NCT04181151 (date of registration November 25, 2019). RESULTS: The excitation of the LD segments during the arm's length reaching task was similar between the groups (p greater than 0.05). The excitation of LD1, LD2, and LD5 in the sagittal plane and of LD1, LD2, LD3, and LD5 in the scapular plane was higher during the reaching 125% of arm's length task compared to the controls (p < 0.05). During the maximum reaching task, the excitation of LD1 was higher in the stroke patients in both the sagittal and scapular planes (p < 0.05). CONCLUSION: The excitation of the LD segments was influenced by the direction and distance of the reaching in the stroke patients. The results of this study may help us to better understand how the LD behaves after stroke and to design rehabilitation approaches with a greater focus on the LD.


Assuntos
Acidente Vascular Cerebral , Músculos Superficiais do Dorso , Humanos , Eletromiografia , Voluntários Saudáveis
6.
Front Bioeng Biotechnol ; 10: 962959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159690

RESUMO

Subject-specific electromyography (EMG)-driven musculoskeletal models that predict muscle forces have the potential to enhance our knowledge of internal biomechanics and neural control of normal and pathological movements. However, technical gaps in experimental EMG measurement, such as inaccessibility of deep muscles using surface electrodes or an insufficient number of EMG channels, can cause difficulties in collecting EMG data from muscles that contribute substantially to joint moments, thereby hindering the ability of EMG-driven models to predict muscle forces and joint moments reliably. This study presents a novel computational approach to address the problem of a small number of missing EMG signals during EMG-driven model calibration. The approach (henceforth called "synergy extrapolation" or SynX) linearly combines time-varying synergy excitations extracted from measured muscle excitations to estimate 1) unmeasured muscle excitations and 2) residual muscle excitations added to measured muscle excitations. Time-invariant synergy vector weights defining the contribution of each measured synergy excitation to all unmeasured and residual muscle excitations were calibrated simultaneously with EMG-driven model parameters through a multi-objective optimization. The cost function was formulated as a trade-off between minimizing joint moment tracking errors and minimizing unmeasured and residual muscle activation magnitudes. We developed and evaluated the approach by treating a measured fine wire EMG signal (iliopsoas) as though it were "unmeasured" for walking datasets collected from two individuals post-stroke-one high functioning and one low functioning. How well unmeasured muscle excitations and activations could be predicted with SynX was assessed quantitatively for different combinations of SynX methodological choices, including the number of synergies and categories of variability in unmeasured and residual synergy vector weights across trials. The two best methodological combinations were identified, one for analyzing experimental walking trials used for calibration and another for analyzing experimental walking trials not used for calibration or for predicting new walking motions computationally. Both methodological combinations consistently provided reliable and efficient estimates of unmeasured muscle excitations and activations, muscle forces, and joint moments across both subjects. This approach broadens the possibilities for EMG-driven calibration of muscle-tendon properties in personalized neuromusculoskeletal models and may eventually contribute to the design of personalized treatments for mobility impairments.

7.
Front Physiol ; 13: 902663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812331

RESUMO

In hypertonic muscles of patients with upper motor neuron syndrome (UMNS), investigation with surface electromyography (EMG) with the muscle in a shortened position and during passive muscle stretch allows to identify two patterns underlying hypertonia: spasticity and spastic dystonia. We recently observed in Para swimmers that the effect of fatigue on hypertonia can be different from subject to subject. Our goal was, therefore, to understand whether this divergent behavior may depend on the specific EMG pattern underlying hypertonia. We investigated eight UMNS Para swimmers (five men, mean age 23.25 ± 3.28 years), affected by cerebral palsy, who presented muscle hypertonia of knee flexors and extensors. Muscle tone was rated using the Modified Ashworth Scale (MAS). EMG patterns were investigated in rectus femoris (RF) and biceps femoris (BF) before and after two fatiguing motor tasks of increasing intensity. Before the fatiguing tasks, two subjects (#2 and 7) had spasticity and one subject (#5) had spastic dystonia in both RF and BF. Two subjects (#3 and 4) showed spasticity in RF and spastic dystonia in BF, whereas one subject (#1) had spasticity in RF and no EMG activity in BF. The remaining two subjects (#6 and 8) had spastic dystonia in RF and no EMG activity in BF. In all the 16 examined muscles, these EMG patterns persisted after the fatiguing tasks. Spastic dystonia increased (p < 0.05), while spasticity did not change (p > 0.05). MAS scores increased only in the muscles affected by spastic dystonia. Among the phenomena possibly underlying hypertonia, only spastic dystonia is fatigue-dependent. Technical staff and medical classifiers should be aware of this specificity, because, in athletes with spastic dystonia, intense and prolonged motor activity could negatively affect competitive performance, creating a situation of unfairness among Para athletes belonging to the same sports class.

8.
Proc Natl Acad Sci U S A ; 119(10): e2120416119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238659

RESUMO

SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Hipertrófica/genética , Ativação do Canal Iônico , Mutação , Isoformas de Proteínas/metabolismo , Canais de Cálcio Tipo L/química , Cristalografia por Raios X , Humanos , Conformação Proteica , Isoformas de Proteínas/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-35162922

RESUMO

The present study examined the posterior chain muscle excitation in different deadlift variations. Ten competitive bodybuilders (training seniority of 10.6 ± 1.8 years) performed the Romanian (RD), Romanian standing on a step (step-RD), and stiff-leg deadlift (SD) with an 80% 1-RM. The excitation of the gluteus maximus, gluteus medius, biceps femoris, semitendinosus, erector spinae longissimus, and iliocostalis was assessed during both the ascending and descending phases. During the ascending phase, the RMS of the gluteus maximus was greater in the step-RD than in the RD (effect size (ES): 1.70, 0.55/2.84) and SD (ES: 1.18, 0.11/2.24). Moreover, a greater RMS was found in the SD than in the RD (ES: 0.99, 0.04/1.95). The RMS of the semitendinosus was greater in the step-RD than in the RD (ES: 0.82, 0.20/1.44) and SD (ES: 3.13, 1.67/4.59). Moreover, a greater RMS was found in the RD than in the SD (ES: 1.38, 0.29/2.48). The RMS of the longissimus was greater in the step-RD than in the RD (ES: 2.12, 0.89/3.34) and SD (ES: 3.28, 1.78/4.78). The descending phase had fewer differences between the exercises. No further differences between the exercises were found. The step-RD increased the overall excitation of the posterior chain muscles, possibly because of the greater range of movement and posterior muscle elongation during the anterior flexion. Moreover, the RD appeared to target the semitendinosus more than the SD, while the latter excited the gluteus maximus more.


Assuntos
Treinamento Resistido , Eletromiografia , Humanos , Perna (Membro) , Músculo Esquelético/fisiologia , Músculos Paraespinais/fisiologia , Romênia
10.
J Neural Eng ; 19(1)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34986472

RESUMO

Objective.Musculoskeletal model (MM) driven by electromyography (EMG) signals has been identified as a promising approach to predicting human motions in the control of prostheses and robots. However, muscle excitations in MMs are generally derived from the EMG signals of the targeted sensor covering the muscle, inconsistent with the fact that signals of a sensor are from multiple muscles considering signal crosstalk in actual situation. To identify more accurate muscle excitations for MM in the presence of crosstalk, we proposed a novel excitation-extracting method inspired by muscle synergy for simultaneously estimating hand and wrist movements.Approach.Muscle excitations were firstly extracted using a two-step muscle synergy-derived method. Specifically, we calculated subject-specific muscle weighting matrix and corresponding profiles according to contributions of different muscles for movements derived from synergistic motion relation. Then, the improved excitations were used to simultaneously estimate hand and wrist movements through musculoskeletal modeling. Moreover, the offline comparison among the proposed method, traditional MM and regression methods, and an online test of the proposed method were conducted.Main results.The offline experiments demonstrated that the proposed approach outperformed the EMG envelope-driven MM and three regression models with higher R and lower NRMSE. Furthermore, the comparison of excitations of two MMs validated the effectiveness of the proposed approach in extracting muscle excitations in the presence of crosstalk. The online test further indicated the superior performance of the proposed method than the MM driven by EMG envelopes.Significance.The proposed excitation-extracting method identified more accurate neural commands for MMs, providing a promising approach in rehabilitation and robot control to model the transformation from surface EMG to joint kinematics.


Assuntos
Eletromiografia , Movimento , Punho , Eletromiografia/métodos , Humanos , Modelos Teóricos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Músculos , Punho/fisiologia , Articulação do Punho/fisiologia
11.
Physiol Rev ; 102(1): 209-268, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280054

RESUMO

Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs and depolarization of the plasma membrane for a particular RyR subtype expressed in skeletal muscle. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3 Å. The available structures have provided many new mechanistic insights into the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of posttranslational modifications, additional binding partners, and the higher order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Músculo Esquelético/metabolismo
12.
J Bodyw Mov Ther ; 27: 393-401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34391262

RESUMO

INTRODUCTION: Shoulder pain increases excitation of the upper trapezius (UT) and reduces excitation in the lower trapezius (LT). Despite inconclusive evidence, kinesio-tape (KT) is often used to modify muscular excitation within the UT and/or LT to help correct alterations in scapular position and motion associated with shoulder pain/injury. The objective of the current study was to determine if inhibitory KT to the UT acutely increases LT excitation and if load alters the magnitude of change in the excitation observed. METHODS: Twenty-two (N = 22, 11 female) individuals with healthy shoulders (24 ± 3 years) completed 10 repetitions of an arm elevation task during 3 taping conditions (no-tape, experimental KT, sham KT) and 2 loading conditions (no load and loaded). Whole-muscle (mean grid) and spatial distribution (grid row) of LT excitation (root mean squared; RMS) was measured using a single high-density surface electromyography 32-electrode grid. RESULTS: There was a main effect for loading condition on whole-muscle LT RMS, F (1, 19) = 38.038, p < .001, partial η2 = 0.667. Whole-muscle LT RMS was significantly higher in the loaded condition (0.055 V ±0 .005) compared to the no-load condition (0.038 V ±0 .004). No effect of tape condition was observed on whole-muscle or spatial distribution of RMS. CONCLUSION: Our findings suggest that inhibitory KT to the UT does not alter whole-muscle excitation or shift the distribution of excitation within the LT during a repeated arm elevation task in healthy shoulders.


Assuntos
Fita Atlética , Músculos Superficiais do Dorso , Eletromiografia , Feminino , Humanos , Músculo Esquelético , Escápula , Ombro
13.
Front Mol Neurosci ; 14: 709390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305529

RESUMO

Contacts between the endoplasmic reticulum (ER) and plasma membrane (PM) contain specialized tethering proteins that bind both ER and PM membranes. In excitable cells, ER-PM contacts play an important role in calcium signaling and transferring lipids. Junctophilins are a conserved family of ER-PM tethering proteins. They are predominantly expressed in muscles and neurons and known to simultaneously bind both ER- and PM-localized ion channels. Since their discovery two decades ago, functional studies using junctophilin-deficient animals have provided a deep understanding of their roles in muscles and neurons, including excitation-contraction coupling, store-operated calcium entry (SOCE), and afterhyperpolarization (AHP). In this review, we highlight key findings from mouse, fly, and worm that support evolutionary conservation of junctophilins.

14.
Elife ; 102021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061024

RESUMO

Skeletal muscle excitation-contraction (EC) coupling roots in Ca2+-influx-independent inter-channel signaling between the sarcolemmal dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) in the sarcoplasmic reticulum. Although DHPR Ca2+ influx is irrelevant for EC coupling, its putative role in other muscle-physiological and developmental pathways was recently examined using two distinct genetically engineered mouse models carrying Ca2+ non-conducting DHPRs: DHPR(N617D) (Dayal et al., 2017) and DHPR(E1014K) (Lee et al., 2015). Surprisingly, despite complete block of DHPR Ca2+-conductance, histological, biochemical, and physiological results obtained from these two models were contradictory. Here, we characterize the permeability and selectivity properties and henceforth the mechanism of Ca2+ non-conductance of DHPR(N617). Our results reveal that only mutant DHPR(N617D) with atypical high-affinity Ca2+ pore-binding is tight for physiologically relevant monovalent cations like Na+ and K+. Consequently, we propose a molecular model of cooperativity between two ion selectivity rings formed by negatively charged residues in the DHPR pore region.


Assuntos
Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Mutação Puntual , Animais , Células Cultivadas , Acoplamento Excitação-Contração , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Permeabilidade , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
15.
Eur J Appl Physiol ; 121(10): 2879-2891, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34191094

RESUMO

PURPOSE: Compare acute muscular responses to unilateral, bilateral, and alternating blood flow restriction (BFR) exercise. METHODS: Maximal strength was tested on visit one. On visits 2-4, 2-10 days apart, 19 participants completed 4 sets of knee extensions (30% one-repetition maximum) with BFR (40% arterial occlusion pressure) to momentary failure (inability to lift load) using each muscle action (counterbalanced order). Ultrasound muscle thickness was measured at 60% and 70% of the anterior thigh before (Pre), immediately (Post-0), and 5 min (Post-5) after exercise. Surface electromyography and tissue deoxygenation were measured throughout. Results, presented as means, were analyzed with a three-way (sex by time by condition) Bayesian RMANOVA. RESULTS: There was a time by sex interaction (BFinclusion: 5.489) for left leg 60% muscle thickness (cm). However, changes from Pre to Post-0 (males: 0.39 vs females: 0.26; BF10: 0.839), Post-0 to Post-5 (males: - 0.05 vs females: - 0.06; BF10: 0.456), and Pre to Post-5 (males: 0.34 vs females: 0.20; BF10: 0.935) did not differ across sex. For electromyography (%MVC), there was a sex by condition interaction (BFinclusion: 550.472) with alternating having higher muscle excitation for females (16) than males (9; BF10: 5.097). Tissue deoxygenation (e.g. channel 1, µM) increased more for males (sets 1: 11.17; 2: 2.91; 3: 3.69; 4: 3.38) than females (sets 1: 4.49; 2: 0.24; 3: - 0.10; 4: - 0.06) from beginning to end of sets (all BFinclusion ≥ 4.295e + 7). For repetitions, there was an interaction (BFinclusion: 17.533), with alternating completing more than bilateral and unilateral for set one (100; 56; 50, respectively) and two (34; 16; 18, respectively). CONCLUSION: Alternating, bilateral, and unilateral BFR exercise elicit similar acute muscular responses.


Assuntos
Exercício Físico/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Adolescente , Adulto , Terapia de Restrição de Fluxo Sanguíneo/métodos , Eletromiografia/métodos , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Adulto Jovem
16.
Int J Numer Method Biomed Eng ; 37(7): e3463, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33835726

RESUMO

EMG analyses have several applications, such as identifying muscle excitation patterns during rehabilitation or training plans, or controlling EMG-driven devices. However, experimental measurements can be time consuming or difficult to obtain. This study presents a simple algorithm to predict EMG signals that can be applied in real time during running, given only the instantaneous vector of kinematics. We hypothesize that the factorization of the kinematics of the skeleton together with the EMG data of calibration subjects could be used to predict EMG data of another subject only using the kinematic information. The results showed that EMG signals of lower-limb muscles can be predicted accurately in less than a second using this method. Correlation coefficients between predicted and experimental EMG signals were higher than 0.7 in 10 out of 11 muscles for most prediction trials and subjects, and their overall median value was higher than 0.8. These values confirm that this method could be used to accurately predict EMG signals in real time when only kinematics are measured.


Assuntos
Algoritmos , Músculo Esquelético , Fenômenos Biomecânicos , Eletromiografia , Humanos
17.
Front Comput Neurosci ; 14: 588943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343322

RESUMO

Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality measurements of muscle electrical activity to estimate muscle forces. However, a critical challenge for practical deployment of this approach is missing EMG data from muscles that contribute substantially to joint moments. This situation may arise due to either the inability to measure deep muscles with surface electrodes or the lack of a sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality reduction approach that decomposes a large number of muscle excitations into a small number of time-varying synergy excitations along with time-invariant synergy weights that define the contribution of each synergy excitation to all muscle excitations. This study evaluates how well missing muscle excitations can be predicted using synergy excitations extracted from muscles with available EMG data (henceforth called "synergy extrapolation" or SynX). The method was evaluated using a gait data set collected from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-comfortable speeds. The evaluation process started with full calibration of a lower-body EMG-driven model using 16 measured EMG channels (collected using surface and fine wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus) was then treated as unmeasured. The synergy weights associated with the unmeasured muscle excitation were predicted by solving a nonlinear optimization problem where the errors between inverse dynamics and EMG-driven joint moments were minimized. The prediction process was performed for different synergy analysis algorithms (principal component analysis and non-negative matrix factorization), EMG normalization methods, and numbers of synergies. SynX performance was most influenced by the choice of synergy analysis algorithm and number of synergies. Principal component analysis with five or six synergies consistently predicted unmeasured muscle excitations the most accurately and with the greatest robustness to EMG normalization method. Furthermore, the associated joint moment matching accuracy was comparable to that produced by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may facilitate the assessment of human neuromuscular control and biomechanics when important EMG signals are missing.

18.
Front Physiol ; 11: 887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848843

RESUMO

Objective: To summarize the existing evidence on the long-term effects of low-load (LL) blood flow restricted (BFR) exercise on neural markers including both central and peripheral adaptations. Methods: A systematic review and meta-analysis was conducted according to the PRISMA guidelines. The literature search was performed independently by two reviewers in the following electronic databases: PubMed, Web of Science, Scopus and CENTRAL. The systematic review included long-term trials investigating the effects of LL-BFR training in healthy subjects and compared theses effects to either LL or high-load (HL) training without blood flow restriction. Results: From a total of N = 4499 studies, N = 10 studies were included in the qualitative synthesis and N = 4 studies in a meta-analysis. The findings indicated that LL-BFR resulted in enhanced levels of muscle excitation compared to LL training with pooled effect sizes of 0.87 (95% CI: 0.38-1.36). Compared to HL training, muscle excitation following LL-BFR was reported as either similar or slightly lower. Differences between central activation between LL-BFR and LL or HL are less clear. Conclusion: The summarized effects in this systematic review and meta-analysis highlight that BFR training facilitates neural adaptations following LL training, although differences to conventional HL training are less evident. Future research is urgently needed to identify neural alterations following long-term blood flow restricted exercise.

19.
Structure ; 28(8): 922-932.e5, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32492370

RESUMO

STAC3 is a soluble protein essential for skeletal muscle excitation-contraction (EC) coupling. Through its tandem SH3 domains, it interacts with the cytosolic II-III loop of the skeletal muscle voltage-gated calcium channel. STAC3 is the target for a mutation (W284S) that causes Native American myopathy, but multiple other sequence variants have been reported. Here, we report a crystal structure of the human STAC3 tandem SH3 domains. We analyzed the effect of five disease-associated variants, spread over both SH3 domains, on their ability to bind to the CaV1.1 II-III loop and on muscle EC coupling. In addition to W284S, we find the F295L and K329N variants to affect both binding and EC coupling. The ability of the K329N variant, located in the second SH3 domain, to affect the interaction highlights the importance of both SH3 domains in association with CaV1.1. Our results suggest that multiple STAC3 variants may cause myopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Canais de Cálcio Tipo L/metabolismo , Fissura Palatina/genética , Acoplamento Excitação-Contração , Hipertermia Maligna/genética , Miotonia Congênita/genética , Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Canais de Cálcio Tipo L/química , Linhagem Celular , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica em Folha beta , Domínios de Homologia de src
20.
Percept Mot Skills ; 127(5): 925-938, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32448047

RESUMO

Verbal instruction increases electromyographic (EMG) activity in the first three repetitions of an exercise, but its effect on an entire exercise set until failure is unknown. Once there are changes in motor unit recruitment due to fatigue, the effect of verbal instructions can change during different intervals of a set. This study analyzed whether verbal instruction emphasized the contraction of back muscles (i.e., myoelectric activity) during initial, intermediate, and final exercise repetitions performed until failure. Twenty participants with little or no experience in strength training performed a seated row exercise with and without verbal instruction. Surface electrodes were fixed over the latissimus dorsi, teres major, biceps brachii, and posterior deltoid (PD) muscles. Myoelectric activity was computed by mean amplitude and by the median frequency. We analyzed data with repeated measures multivariate analysis of variance and found that, with verbal instruction, there was increased EMG mean amplitude in the latissimus dorsi (15.21%, p = .030) and reduced EMG mean amplitude in the PD (14.39%, p = .018) on initial repetitions. Other muscle EMG amplitudes did not change. On intermediate repetitions, there was reduced signal amplitude only in the PD (15.03%, p = .022). The verbal instruction did not interfere with signal amplitude on final repetitions nor in the median frequency throughout the series. Verbal instruction seems to have little effect on increasing myoelectric activity of these targeted muscles in an entire set of a resistance training.


Assuntos
Exercício Físico/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Esportes Aquáticos/fisiologia , Adolescente , Braço/fisiologia , Eletromiografia , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA