Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Phys Ther Sci ; 36(8): 441-446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092417

RESUMO

[Purpose] Optimization of post-training muscle recovery is important in clinical rehabilitation and sports science. In this study, we investigated the effects of local vibration stimulation on post-training muscle recovery and hypertrophy in healthy adults, focusing on the upper extremities. [Participants and Methods] The study included 20 healthy students categorized into the control and vibration stimulation groups. Both groups underwent training, including elbow flexion. The vibration stimulation group received immediate post-training local vibration stimulation. Evaluation included measurement of upper arm circumference, muscle strength, muscle hardness, and ultrasonographic imaging. [Results] Our results showed that local vibration stimulation increased muscle luminosity but had no significant effect on muscle strength, hardness, or thickness. [Conclusion] Post-training vibration stimulation may promote muscle growth and recovery by stimulating blood flow and improving nutrient and oxygen supply to muscles.

2.
Clin Nutr ESPEN ; 62: 224-233, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843393

RESUMO

Under optimal physiological conditions, muscle mass maintenance is ensured by dietary protein, which balances the amino acid loss during the post-absorption period and preserves the body's protein homeostasis. Conversely, in critical clinical conditions (acute, subacute or postacute), particularly those related to hypomobility or immobility, combined with malnutrition, and local/systemic inflammation, the loss of muscle mass and strength can be quantitatively significant. A decline of more than 1% in muscle mass and of more than 3% in muscle strength has been registered in subjects with aged 20-37 yr after just five days of bed rest, similarly to those observed during one year of age-related decline in individuals over the age of 50. Loss of muscle mass and strength can have a dramatic effect on subjects' functional capacities, on their systemic metabolic control and on the amino acid reserve function, all of which are fundamental for the maintenance of other organs' and tissues' cell processes. References available indicate that the average 1%-2% reduction per day of muscle mass in patients in the intensive care unit (ICU) could represent an independent predictor of hospital mortality and physical disability in the five years following hospitalization. After just a few days or weeks of administration, supplementation with EAAs and glutamine has shown significant effects in maintaining muscle size and strength, which are typically negatively affected by some acute/subacute or postacute critical conditions (muscle recovery after surgery, oncology patients, ICU treatments), especially in the elderly or in those with pre-existing degenerative diseases. In this review, we focused on the theoretical bases and the most relevant clinical studies of EAA and glutamine supplementation as a single compound, with the aim of clarifying whether their combined use in a blend (EAAs-glutamine) could be potentially synergistic to prevent disease-related muscle wasting and its impact on the duration and quality of patients' clinical course.


Assuntos
Aminoácidos Essenciais , Suplementos Nutricionais , Glutamina , Músculo Esquelético , Atrofia Muscular , Humanos , Glutamina/administração & dosagem , Glutamina/uso terapêutico , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/uso terapêutico , Força Muscular/efeitos dos fármacos , Doença Aguda , Estado Terminal
3.
Acta Physiol (Oxf) ; 240(3): e14111, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38314948

RESUMO

AIM: This study aimed to investigate the effects of caffeine on pathways associated with mitochondrial quality control and mitochondrial capacity during skeletal muscle regeneration, focusing on the role of Parkin, a key protein involved in mitophagy. METHODS: We used in vitro C2C12 myoblast during differentiation with and without caffeine in the medium, and we evaluated several markers of mitochondrial quality control pathways and myotube growth. In vivo experiments, we used C57BL/6J (WT) and Parkintm 1Shn lineage (Parkin-/- ) mice and injured tibial anterior muscle. The mice regenerated TA muscle for 3, 10, and 21 days with or without caffeine ingestion. TA muscle was used to analyze the protein content of several markers of mitochondrial quality pathways, muscle satellite cell differentiation, and protein synthesis. Furthermore, it analyzed mtDNA, mitochondrial respiration, and myofiber growth. RESULTS: C2C12 differentiation experiments showed that caffeine decreased Parkin content, potentially leading to increased DRP1 and PGC-1α content and altered mitochondrial population, thereby enhancing growth capacity. Using Parkin-/- mice, we found that caffeine intake during the regenerative process induces an increase in AMPKα phosphorylation and PGC-1α and TFAM content, changes that were partly Parkin-dependent. In addition, the absence of Parkin potentiates the ergogenic effect of caffeine by increasing mitochondrial capacity and myotube growth. Those effects are related to increased ATF4 content and activation of protein synthesis pathways, such as increased 4E-BP1 phosphorylation. CONCLUSION: These findings demonstrate that caffeine ingestion changes mitochondrial quality control during skeletal muscle regeneration, and Parkin is a central player in those mechanisms.


Assuntos
Cafeína , Músculo Esquelético , Camundongos , Animais , Cafeína/farmacologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regeneração
4.
Medicina (Kaunas) ; 60(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256386

RESUMO

Background and Objectives: In many sports, maintaining muscle work at an optimal level despite fatigue is crucial. Therefore, it is essential to discover the most efficient way of recovery. This study aimed to evaluate and compare the acute effects of four different recovery methods on muscle neuromechanical properties. Materials and Methods: The research was conducted using a randomized, quasi-experimental, repeated-measures design. Fourteen healthy and active male students of the Faculty of Sport and Physical Education (age 25.1 ± 3.9 years) were included in this study. The tensiomyography was used to evaluate muscle responses after four different types of short-term recovery methods (passive rest, percussive mechanical, vibro-mechanical, and manual massage) on the rectus femoris muscle on four occasions: baseline, post fatigue, post recovery and prolonged recovery. Results: The ANOVA revealed that muscle fatigue decreased maximal vertical muscle displacement (Dm) and muscle contraction time (Tc) in post fatigue compared to the baseline. The most important finding shows that only the vibro-mechanical massage resulted in an increase in Tc in the prolonged recovery compared to the post fatigue (p = 0.028), whereas only manual massage showed no differences in Dm from the baseline in post-recovery (p = 0.148). Moreover, both manual and vibro-mechanical massages increased Dm and Tc in prolonged recovery, indicating no differences from the baseline (all p > 0.05), thus showing signs of muscle recovery. Percussion mechanical massage and passive rest did not show indices of muscle recovery. Conclusions: Manual massage could induce immediate positive changes in Dm by reducing muscle stiffness. In addition, vibro-mechanical and manual massage improved muscle tissue by rapidly returning Dm and Tc values to baseline at prolonged recovery measurement (5 min after the fatigue protocol). These findings can benefit sports practitioners, and physical therapists in developing the best recovery method after muscle fatigue.


Assuntos
Contração Muscular , Músculo Quadríceps , Masculino , Humanos , Adulto Jovem , Adulto , Fadiga Muscular , Massagem , Nível de Saúde
5.
Scand J Med Sci Sports ; 34(1): e14503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37747708

RESUMO

PURPOSE: Hot water immersion (HWI) has gained popularity to promote muscle recovery, despite limited data on the optimal heat dose. The purpose of this study was to compare the responses of two exogenous heat strains on core body temperature, hemodynamic adjustments, and key functional markers of muscle recovery following exercise-induced muscle damage (EIMD). METHODS: Twenty-eight physically active males completed an individually tailored EIMD protocol immediately followed by one of the following recovery interventions: HWI (40°C, HWI40 ), HWI (41°C, HWI41 ) or warm water immersion (36°C, CON36 ). Gastrointestinal temperature (Tgi ), hemodynamic adjustments (cardiac output [CO], mean arterial pressure [MAP], and systemic vascular resistance [SVR]), pre-frontal cortex deoxyhemoglobin (HHb), ECG-derived respiratory frequency, and subjective perceptual measures were tracked throughout immersion. In addition, functional markers of muscle fatigue (maximal concentric peak torque [Tpeak ]) and muscle damage (late-phase rate of force development [RFD100-200 ]) were measured prior to EIMD (pre-), 24 h (post-24 h), and 48 h (post-48 h) post-EIMD. RESULTS: By the end of immersion, HWI41 led to significantly higher Tgi values than HWI40 (38.8 ± 0.1 vs. 38.0°C ± 0.6°C, p < 0.001). While MAP was well maintained throughout immersion, only HWI41 led to increased (HHb) (+4.2 ± 1.47 µM; p = 0.005) and respiratory frequency (+4.0 ± 1.21 breath.min-1 ; p = 0.032). Only HWI41 mitigated the decline in RFD100-200 at post-24 h (-7.1 ± 31.8%; p = 0.63) and Tpeak at post-48 h (-3.1 ± 4.3%, p = 1). CONCLUSION: In physically active males, maintaining a core body temperature of ~25 min within the range of 38.5°C-39°C has been found to be effective in improving muscle recovery, while minimizing the risk of excessive physiological heat strain.


Assuntos
Temperatura Corporal , Fadiga Muscular , Humanos , Masculino , Temperatura Alta , Imersão , Fadiga Muscular/fisiologia , Temperatura , Água
6.
J Diet Suppl ; 21(3): 344-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981793

RESUMO

Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.


Assuntos
Músculo Esquelético , Soro do Leite , Animais , Bovinos , Humanos , Conectina/farmacologia , Contração Muscular/fisiologia , Mialgia/prevenção & controle , Proteínas do Soro do Leite/farmacologia
7.
J Am Heart Assoc ; 12(16): e028880, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548153

RESUMO

Background Peripheral arterial disease and critical limb ischemia are cardiovascular complications associated with vascular insufficiency, oxidative metabolic dysfunction, and myopathy in the limbs. Estrogen-related receptor gamma (ERRγ) has emerged as a dual regulator of paracrine angiogenesis and oxidative metabolism through transgenic mouse studies. Here our objective was to investigate whether postischemic intramuscular targeting of ERRγ via gene therapy promotes ischemic recovery in a preclinical model of peripheral arterial disease/critical limb ischemia. Methods and Results Adeno-associated virus 9 (AAV9) Esrrg gene delivery vector was developed and first tested via intramuscular injection in murine skeletal muscle. AAV9-Esrrg robustly increased ERRγ protein expression, induced angiogenic and oxidative genes, and boosted capillary density and succinate dehydrogenase oxidative metabolic activity in skeletal muscles of C57Bl/6J mice. Next, hindlimb ischemia was induced via unilateral femoral vessel ligation in mice, followed by intramuscular AAV9-Esrrg (or AAV9-green fluorescent protein) gene delivery 24 hours after injury. ERRγ overexpression increased ischemic neoangiogenesis and markers of endothelial activation, and significantly improved ischemic revascularization measured using laser Doppler flowmetry. Moreover, ERRγ overexpression restored succinate dehydrogenase oxidative metabolic capacity in ischemic muscle, which correlated with increased mitochondrial respiratory complex protein expression. Most importantly, myofiber size to number quantification revealed that AAV9-Esrrg restores myofibrillar size and mitigates ischemia-induced myopathy. Conclusions These results demonstrate that intramuscular AAV9-Esrrg delivery rescues ischemic pathology after hindlimb ischemia, underscoring that Esrrg gene therapy or pharmacological activation could be a promising strategy for the management of peripheral arterial disease/critical limb ischemia.


Assuntos
Doença Arterial Periférica , Succinato Desidrogenase , Camundongos , Animais , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Isquemia Crônica Crítica de Membro , Neovascularização Fisiológica/genética , Músculo Esquelético/irrigação sanguínea , Terapia Genética , Camundongos Transgênicos , Doença Arterial Periférica/terapia , Isquemia/genética , Isquemia/terapia , Isquemia/patologia , Estrogênios/metabolismo , Membro Posterior/irrigação sanguínea , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Phys Act Nutr ; 27(2): 8-12, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37583066

RESUMO

PURPOSE: This review aimed to investigate the effects of high-dose vitamins C and E supplementation combined with acute or chronic exercise on muscle recovery and training adaptation. METHODS: We used PubMed, Web of Science, and Wiley Online Library databases to perform a literature search based on the keywords 'vitamin C, vitamin E, antioxidants, muscle recovery, training adaptation, and oxidative stress'. RESULTS: Vitamin C or E supplementation has been reported to contribute to a reduction in oxidative stress and muscle damage; however, there is currently inadequate evidence of their positive effects on muscle recovery. Long-term vitamin C or E supplementation can have negative effects on physiological phenomena required for training adaptation, such as strength, muscle hypertrophy, and endurance. Numerous studies emphasized that an adequate diet consisting of fruits and vegetables is a more appropriate way of consuming antioxidants than supplementation. CONCLUSION: The effects of high-dose vitamin C and E supplementation on post-exercise muscle recovery remain unclear and ambiguous, although there is evidence of potential negative effects on training adaptation.

9.
Orthop J Sports Med ; 11(7): 23259671231169196, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435425

RESUMO

Background: Return-to-play (RTP) assessment after anterior cruciate ligament reconstruction (ACLR) rarely includes hip strength. Hypothesis: It was hypothesized that (1) patients after ACLR will have weaker hip abduction (AB) and adduction (AD) strength compared with the contralateral limb, with larger deficits in women, (2) there will be a correlation between hip and thigh strength ratios and patient-reported outcomes (PROs), and (3) hip AB and AD strength will improve over time. Study Design: Descriptive laboratory study. Methods: Included were 140 patients (74 male, 66 female; mean age, 24.16 ± 10.82 years) who underwent RTP assessment at 6.1 ± 1.6 months after ACLR; 86 patients underwent a second assessment at 8.2 ± 2.2 months. Hip AB/AD and knee extension/flexion isometric strength were measured and normalized to body mass, and PRO scores were collected. Strength ratios (hip vs thigh), limb differences (injured vs uninjured), sex-based differences, and relationships between strength ratios and PROs were determined. Results: Hip AB strength was weaker on the ACLR limb (ACLR vs contralateral: 1.85 ± 0.49 vs 1.89 ± 0.48 N·m/kg; P < .001) and hip AD torque was stronger (ACLR vs contralateral: 1.80 ± 0.51 vs 1.76 ± 0.52 N·m/kg; P = .004), with no sex-by-limb interaction found. Lower hip-to-thigh strength ratios of the ACLR limb were correlated with higher PRO scores (r = -0.17 to -0.25). Over time, hip AB strength increased in the ACLR limb more than in the contralateral limb (P = .01); however, the ACLR limb remained weaker in hip AB at visit 2 (ACLR vs contralateral: 1.88 ± 0.46 vs 1.91 ± 0.45 N·m/kg; P = .04). In both limbs, hip AD strength was greater at visit 2 than visit 1 (ACLR: 1.82 ± 0.48 vs 1.70 ± 0.48 N·m/kg; contralateral: 1.76 ± 0.47 vs 1.67 ± 0.47 N·m/kg; P < .01 for both). Conclusion: The ACLR limb had weaker hip AB and stronger AD compared with the contralateral limb at initial assessment. Hip muscle strength recovery was not influenced by sex. Hip strength and symmetry improved over the course of rehabilitation. Although strength differences across limbs were minor, the clinical importance of these differences is still unknown. Clinical Relevance: The evidence provided highlights the need to integrate hip strength into RTP assessments to identify hip strength deficits that may increase reinjury or lead to poor long-term outcomes.

10.
Biol Sport ; 40(3): 767-774, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398959

RESUMO

This study aimed to verify the time course recovery of muscle edema within the quadriceps femoris and functional performance after lower-body single- and multi-joint exercises. For this within-participant unilateral and contralateral experimental design, fourteen untrained young males performed a unilateral knee extension exercise (KE), and a unilateral leg press (LP) exercise in a counterbalanced order. At pre-, post-, 24 h, 48 h, 72 h, and 96 h after exercise, the peak torque (PT), unilateral countermovement jump (uCMJ) performance, and rectus femoris (RF) and vastus lateralis (VL) muscle thicknesses were recorded in both legs. The PT decreased immediately after (p = 0.01) both exercises (KE and LP) and was fully recovered 24 h after KE (p = 0.38) and 48 h after LP (p = 0.68). Jump height and power, in the uCMJ, followed the same PT recovery pattern after both exercises. However, vertical stiffness (Kvert) was not affected at any time point after both protocols. The RF thickness increased after both exercises (p = 0.01) and was fully restored 48 h after KE (p = 0.86) and 96 h after LP (p = 1.00). The VL thickness increased after both exercises (p = 0.01) and was fully restored 24 h after LP (p = 1.00) and 48 h after KE (p = 1.00). The LP exercise, compared to KE, induced more prolonged impairment of functional performance and delayed recovery of RF muscle edema. However, the VL edema-induced muscle swelling recovery was delayed after the KE exercise. The different recovery kinetics between functional performance and muscle damage should be taken into consideration depending on the objectives of the next training sessions.

11.
Magn Reson Med ; 90(5): 1990-2000, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345717

RESUMO

PURPOSE: Postexercise recovery rate is a vital component of designing personalized training protocols and rehabilitation plans. Tracking exercise-induced muscle damage and recovery requires sensitive tools that can probe the muscles' state and composition noninvasively. METHODS: Twenty-four physically active males completed a running protocol consisting of a 60-min downhill run on a treadmill at -10% incline and 65% of maximal heart rate. Quantitative mapping of MRI T2 was performed using the echo-modulation-curve algorithm before exercise, and at two time points: 1 h and 48 h after exercise. RESULTS: T2 values increased by 2%-4% following exercise in the primary mover muscles and exhibited further elevation of 1% after 48 h. For the antagonist muscles, T2 values increased only at the 48-h time point (2%-3%). Statistically significant decrease in the SD of T2 values was found following exercise for all tested muscles after 1 h (16%-21%), indicating a short-term decrease in the heterogeneity of the muscle tissue. CONCLUSION: MRI T2 relaxation time constitutes a useful quantitative marker for microstructural muscle damage, enabling region-specific identification for short-term and long-term systemic processes, and sensitive assessment of muscle recovery following exercise-induced muscle damage. The variability in T2 changes across different muscle groups can be attributed to their different role during downhill running, with immediate T2 elevation occurring in primary movers, followed by delayed elevation in both primary and antagonist muscle groups, presumably due to secondary damage caused by systemic processes.


Assuntos
Músculo Esquelético , Corrida , Masculino , Humanos , Músculo Esquelético/diagnóstico por imagem , Corrida/fisiologia , Exercício Físico , Imageamento por Ressonância Magnética/métodos
12.
Nutrients ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242198

RESUMO

Unaccustomed eccentric exercise results in muscle damage limiting physical performance for several days. This study investigated if Greenshell™ mussel (GSM) powder consumption expedited muscle recovery from eccentric exercise-induced muscle damage (EIMD). Methods: Twenty untrained adult men were recruited into a double-blind, placebo-controlled, cross-over study and were randomly assigned to receive the GSM powder or placebo treatment first. Participants consumed their allocated intervention for four weeks then completed a bench-stepping exercise that induced muscle damage to the eccentrically exercised leg. Muscle function, soreness and biomarkers of muscle damage, oxidative stress and inflammation were measured before exercise, immediately after exercise and 24, 48 and 72 h post exercise. GSM powder promoted muscle function recovery, significantly improving (p < 0.05) isometric and concentric peak torque at 48 h and 72 h post exercise, respectively. Participants on the GSM treatment had faster dissipation of soreness, with significant treatment × time interactions for affective (p = 0.007) and Visual Analogue Scale-assessed pain (p = 0.018). At 72 h, plasma creatine kinase concentrations in the GSM group were lower (p < 0.05) compared with the placebo group. This study provides evidence for GSM powder being effective in supporting muscle recovery from EIMD.


Assuntos
Músculo Esquelético , Dor , Masculino , Humanos , Adulto , Pós , Estudos Cross-Over , Nova Zelândia , Suplementos Nutricionais , Mialgia/tratamento farmacológico
13.
Eur J Sport Sci ; 23(8): 1666-1676, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37010103

RESUMO

We aimed to investigate the influence of 4-wk of fish oil (FO) supplementation on markers of muscle damage, inflammation, muscle soreness, and muscle function during acute recovery from eccentric exercise in moderately trained males. Sixteen moderately-trained males ingested 5 g/d of FO (n = 8) or soybean oil (placebo) capsules (n = 8) for 4-wk prior to- and 3-d following an acute eccentric exercise bout. Eccentric exercise consisted of 12 sets of isokinetic knee extension and knee flexion. Indices of muscle damage, soreness, function and inflammation were measured at baseline and during exercise recovery. Eccentric exercise elicited an increase in muscle soreness (p < 0.010) and thigh volume (p < 0.001), and reduced peak isometric torque by 31.7 ± 6.9%, (p < 0.05, 95% CI 10.6-52.8) during 3-d of recovery. Blood omega-3 polyunsaturated fatty acid concentration was 14.9 ± 2.4% higher in FO than PLA (p < 0.01, 95% CI 9.8-20.1). However, FO did not ameliorate the cumulative creatine kinase response (expressed as AUC; p = 0.368), inflammation (p = 0.400), muscle soreness (p > 0.140), or muscle function (p > 0.249) following eccentric exercise. FO supplementation confers no clear benefit in terms of ameliorating the degree of muscle damage, or facilitating the muscle repair process, during acute eccentric exercise recovery. These data suggest that FO supplementation does not provide an effective nutritional strategy to promote exercise recovery, at least in moderately-trained young men.Abbreviations: ANOVA: Analysis of variance; AUC: Area under curve; CI: Confidence interval; CK: Creatine kinase; CMJ: Countermovement jump; COX: Cyclooxygenase; CRP: C-reactive protein; DHA: Docosahexaenoic acid; DOMS: Delayed-onset muscle soreness; EIMD: Exercise-induced muscle damage; En%: Energy percent; EPA: Eicosapentaenoic acid; FO: Fish oil; IL-6: Interleukin-6; LDH: Lactate dehydrogenase; LOX: Lipoxygenase; Mb: Myoglobin; mTOR: Mechanistic target of rapamycin; PLA: Placebo; ROM: Range of motion; ROS: Reactive oxygen species; SD: Standard deviation; SEM: Standard error of the mean; TNF-α: Tumour necrosis factor alpha; VAS: Visual analogue scale; Ω3-PUFA: Omega-3 polyunsaturated fatty acids; Ω6-PUFA: Omega-6 polyunsaturated fatty acidsHighlightsThe anti-inflammatory properties of omega-3 polyunsaturated fatty acids, alongside their propensity to incorporate into the muscle phospholipid membrane underpins the idea that fish oil supplementation may attenuate muscle damage and promote muscle repair following eccentric-based exercise.Four weeks of high-dose (5 g/d) fish oil supplementation prior to eccentric exercise failed to attenuate the rise in creatine kinase concentration and muscle soreness during acute exercise recovery in physically-active young men.Future studies are warranted to investigate the efficacy of combining omega-3 polyunsaturated fatty acids with other nutrients (i.e. protein/amino acids) for the promotion of muscle recovery following eccentric-based damaging exercise.


Assuntos
Ácidos Graxos Ômega-3 , Óleos de Peixe , Masculino , Humanos , Mialgia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação , Exercício Físico/fisiologia , Músculos , Creatina Quinase , Poliésteres/farmacologia , Poliésteres/uso terapêutico , Músculo Esquelético/fisiologia
14.
Nutrients ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986219

RESUMO

Adding potassium nitrate (KNO3) to the diet improves the physiological properties of mammalian muscles (rebuilds weakened muscle, improves structure and functionality). The aim of this study was to investigate the effect of KNO3 supplementation in a mouse model. BALB/c mice were fed a KNO3 diet for three weeks, followed by a normal diet without nitrates. After the feeding period, the Extensor digitorum longus (EDL) muscle was evaluated ex vivo for contraction force and fatigue. To evaluate the possible pathological changes, the histology of EDL tissues was performed in control and KNO3-fed groups after 21 days. The histological analysis showed an absence of negative effects in EDL muscles. We also analyzed 15 biochemical blood parameters. After 21 days of KNO3 supplementation, the EDL mass was, on average, 13% larger in the experimental group compared to the controls (p < 0.05). The muscle-specific force increased by 38% in comparison with the control group (p < 0.05). The results indicate that KNO3 has effects in an experimental mouse model, showing nitrate-diet-induced muscle strength. This study contributes to a better understanding of the molecular changes in muscles following nutritional intervention and may help develop strategies and products designated to treat muscle-related issues.


Assuntos
Músculo Esquelético , Nitratos , Camundongos , Animais , Nitratos/farmacologia , Compostos de Potássio , Suplementos Nutricionais , Contração Muscular , Mamíferos
15.
Muscle Nerve ; 67(4): 320-329, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747325

RESUMO

INTRODUCTION/AIMS: Because wounded warfighters or trauma victims may receive en route care to the closest medical facility via airplane transport, we investigated the effects of extended mild hypobaric hypoxia (HB), the environmental milieu of most airplanes, on inflammation and regeneration after muscle trauma or monotrauma (MT) and muscle trauma-hemorrhagic shock or polytrauma (PT). METHODS: Male C57BL/6N mice were assigned to one of six groups pertaining to injury (control/uninjured, MT, and PT) and atmospheric pressure exposure (HB and normobaric normoxia, NB). Body mass, blood and muscle leukocyte number by flow cytometry, immunohistochemistry, or both, and the muscle relative mRNA level of selected genes involved in inflammation and muscle regeneration were examined at ~1.7, 4, 8, and 14 days post trauma (dpt). At 14 dpt, the proportion of smaller- and larger-sized myofibers at the regenerating site of MT mice was determined. RESULTS: Greater body mass loss, an increased number of blood and muscle leukocytes, and differential muscle relative mRNA levels were observed in MT and PT groups compared to controls. The MT+HB or PT+HB mice demonstrated more body mass loss and altered relative mRNA level than the corresponding NB mice. Additionally, a subgroup of MT+HB mice demonstrated a greater proportion of smaller myofibers (250 to 500 µm2 ) than MT+NB mice at 14 dpt. DISCUSSION: HB exposure after muscle trauma alone may prolong regeneration. Following HB exposure, therapies that promote oxygenation may be needed during this muscle recovery.


Assuntos
Traumatismo Múltiplo , Choque Hemorrágico , Lesões dos Tecidos Moles , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Hipóxia , Inflamação , Músculos , RNA Mensageiro
16.
Sports Health ; 15(3): 318-327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36154748

RESUMO

CONTEXT: Oral contraceptives (OCs) manipulate hormonal fluctuations of the menstrual cycle and affect physical performance. Most investigations on the effect of OCs on physical performance did not discriminate between different types of OCs. Thus, the effects of monophasic OCs (MOCs) - the most common type of OCs - on muscle strength and recovery from exercise are largely unknown. OBJECTIVE: To examine the effect of MOC use on muscle strength and markers of recovery after exercise-induced muscle damage (EIMD) in premenopausal women. DATA SOURCES: Electronic databases Embase, PubMed, SportDiscus, and Web of Science were searched for studies examining the effect of MOCs on acute muscle strength and recovery. STUDY SELECTION: Keywords applied for the study selection were oral contraceptive* AND muscle strength or oral contraceptive* AND muscle damage. STUDY DESIGN: Systematic review. LEVEL OF EVIDENCE: Lowest quality assessed for an included study in this review was serious risk of bias using ROBINS-I tool made from Cochrane for nonrandomized studies. DATA EXTRACTION: A total of 104 studies on muscle strength were identified, of which 11 met the inclusion criteria. Concerning recovery, 51 studies were identified, of which 4 met the inclusion criteria. RESULTS: Of the 11 studies included, 10 showed no effect of MOCs on acute muscle strength. Of the 4 studies on recovery, 2 found a greater decrease in muscle strength, and 3 found higher creatine kinase (CK) levels after EIMD in MOC users than in nonusers. The included studies were all rated with moderate-to-serious risk of bias. CONCLUSION: These findings suggest that MOCs may impair recovery from EIMD as indicated by lowered muscle strength and elevated CK levels. There is insufficient evidence to conclude whether MOCs acutely affect muscle strength. Moderate-to-serious risk of bias in studies makes interpretation challenging.


Assuntos
Anticoncepção , Anticoncepcionais Orais , Feminino , Humanos , Exercício Físico/fisiologia , Força Muscular , Músculos
17.
Eur J Nutr ; 62(3): 1345-1356, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36566465

RESUMO

BACKGROUND: Antarctic krill oil (KO) is a natural source of n-3 polyunsaturated fatty acids (n-3 PUFAs), and is rich in phospholipids, Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), astaxanthin, flavonoids, vitamins, trace elements, and other bioactive substances. KO has been confirmed to have anti-inflammatory and immunomodulatory effects. n-3 PUFAs also have been purported to improve the recovery of muscular performance. Moreover, the phospholipids present in KO can enhance n-3 PUFA bioavailability because of its higher absorption rate in plasma compared to fish oil. Astaxanthin, found in Antarctic KO, is a red carotenoid and powerful antioxidant that inhibits oxidative stress after intense exercise. Hence, we examined the effect of KO supplementation on the recovery of exercise by measuring muscular performance, oxidant/antioxidant and anti-inflammatory activity, and the markers of muscle damage following a rigorous bout of resistance exercise. METHODS: 30 college-aged resistance-trained males (20.4 ± 0.92 years, 74.09 ± 7.23 kg, 180.13 ± 4.72 cm) were randomly supplemented with 3 g/d KO or placebo (PL) for 3 days and continued to consume after resistance exercise for 3 days until the experiment finished. Before supplementation, pre-exercise performance assessments of knee isokinetic strength, 20 m sprint, hexagon test, and blood serum creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were completed. Then after 3 days of supplementation, participants completed a bout of muscle-damaging exercise, and subsequently, they performed and repeated the exercise performance assessments and blood-related indicators tests immediately (0 h), as well as at 6, 24, 48, and 72 h post-muscle-damaging exercise. RESULTS: Compared to the PL group, the serum CK of KO group was significantly lower at 24 h and 48 h post-exercise; the hexagon test time of the KO group was significantly lower than that of the PL group at 6 h and 24 h post-exercise; the KO group's isokinetic muscle strength showed different degrees of recovery than that of the PL group at 24 h and 48 h, and even over-recovery at 72 h post-exercise; the SOD level of the KO group was significantly higher than that of the PL group at 0, 6, and 24 h after exercise; the T-AOC level of the KO group was significantly higher than that of the PL group at 0, 6, and 72 h after exercise; the MDA level of the KO group was significantly lower than that of the PL group at 6 h; and there was no significant difference in serum IL-2, IL-6, and TNF-α between the two groups. CONCLUSION: Our results demonstrated that 3 g/d KO supplementation and continued supplementation after exercise can alleviate exercise-induced muscle damage (EIMD) and promote post-exercise recovery.


Assuntos
Euphausiacea , Ácidos Graxos Ômega-3 , Treinamento Resistido , Animais , Humanos , Masculino , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Interleucina-2/farmacologia , Interleucina-6 , Músculo Esquelético , Fosfolipídeos , Superóxido Dismutase , Fator de Necrose Tumoral alfa
18.
Front Physiol ; 14: 1331878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264326

RESUMO

Background: Hamstring muscles are most affected by multiple sprint-based sports as a result of muscle strain during sprinting, leading to reduced performance and increased risk of injury. Therefore, the purpose of the study was to assess inter-individual variability in hamstrings recovery after a sport-specific repeated-sprint training (RST), through sprint-specific markers of muscle recovery and associated muscle damage biomarkers in women and men. Methods: Healthy females (n = 14) and males (n = 15) underwent 10 repeated 40-m sprints with a 3-min rest pause between each repetition. Force-generating capacity (FGC) by the 90° hip :20° knee test and range of motion Jurdan test, together with serum biomarkers [sarcomeric mitochondrial creatine kinase (sMtCK), oxidative stress, irisin] were tested at baseline and 24-, 48- and 72-h post-exercise through a repeated measures design. Participants were classified according to FGC loss into high responders (HR) and low responders (LR). Results: 21 individuals (10 females, 11 males) were classified as HR (FGC loss >20% and recovery >48 h), while 8 individuals (4 females, 4 males) were classified as LR. HR individuals showed unrecovered maximal voluntary isometric contraction (MVIC) torque until 72 h post-training (p = 0.003, np 2 = 0.170), whereas only HR males showed decreased range of motion (p = 0.026, np 2 = 0.116). HR individuals also showed increased sMtCK (p = 0.016, np 2 = 0.128), oxidative stress (p = 0.038, np 2 = 0.106) and irisin (p = 0.019, np 2 = 0.123). Conclusion: There is inter-individual variability in the muscular response to a sport-specific RST, identifiable by MVIC torque assessment. The findings support that the 90° hip :20° knee test is a powerful indirect test to screen hamstrings recovery in both women and men, in a cost-effective way. However, the Jurdan test might not be able to monitor hamstrings recovery in sportswomen after RST. Decreases in muscle capacity are linked to damage to muscle sarcolemma and mitochondria until 72 h post-exercise. Overall, 72 h will not be adequate time to restore hamstrings structure and function after a sport-specific RST in both female and male responders.

19.
Cannabis Cannabinoid Res ; 7(6): 745-757, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36454174

RESUMO

Background: Cannabidiol (CBD), a nonintoxicating constituent of the cannabis plant, recently gained a lot of interest among athletes, since it is no longer considered as a prohibited substance by the World Anti-Doping Agency. The increasing prevalence of CBD use among athletes is driven by a perceived improvement in muscle recovery and a reduction in pain. However, compelling evidence from intervention studies is lacking and the precise mechanisms through which CBD may improve muscle recovery remain unknown. This highlights the need for more scientific studies and an evidence-based background. In the current review, the state-of-the-art knowledge on the effects of CBD on skeletal muscle tissue is summarized with special emphasis on the underlying mechanisms and molecular targets. More specifically, the large variety of receptor families that are believed to be involved in CBD's physiological effects are discussed. Furthermore, in vivo and in vitro studies that investigated the actual effects of CBD on skeletal muscle metabolism, inflammation, tissue regeneration, and anabolism are summarized, together with the functional effects of CBD supplementation on muscle recovery in human intervention trials. Overall, CBD was effective to increase the expression of metabolic regulators in muscle of obese mice (e.g., Akt, glycogen synthase kinase-3). CBD treatment in rodents reduced muscle inflammation following eccentric exercise (i.e., nuclear factor kappa B [NF-κB]), in a model of muscle dystrophy (e.g., interleukin-6, tumor necrosis factor alpha) and of obesity (e.g., COX-2, NF-κB). In addition, CBD did not affect in vitro or in vivo muscle anabolism, but improved satellite cell differentiation in dystrophic muscle. In humans, there are some indications that CBD supplementation improved muscle recovery (e.g., creatine kinase) and performance (e.g., squat performance). However, CBD doses were highly variable (between 16.7 and 150 mg) and there are some methodological concerns that should be considered. Conclusion: CBD has the prospective to become an adequate supplement that may improve muscle recovery. However, this research domain is still in its infancy and future studies addressing the molecular and functional effects of CBD in response to exercise are required to further elucidate the ergogenic potential of CBD.


Assuntos
Canabidiol , Animais , Camundongos , Humanos , Canabidiol/farmacologia , NF-kappa B , Estudos Prospectivos , Exercício Físico , Músculo Esquelético
20.
Immunotargets Ther ; 11: 67-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277614

RESUMO

Introduction: It is well established that moderate physical activity can improve the immune status, rather excess or high-intensity physical exercise can cause damage to the immune system. In addition, muscle injuries resulting from increased frequency and intensity of exercises compromise innate immune activity and may decrease tissue regeneration. Thus, ß-glucans, a natural compound, may represent an important substance with strong immunomodulatory properties acting as an immunostimulant therapy known as "trained immunity". This immune stimulating therapeutic is an immunological memory phenomenon linked to the innate immune system, triggering cellular changes at epigenetic, transcriptional, and functional levels, to regulate the immune system and recover its homeostasis with clinical benefits. Conclusion: This narrative review works with the current evidence regarding ß-glucans as a possible alternative therapy for wound healing and its safety and efficacy in the treatment of muscle injuries and physical recovery including other chronic conditions and diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA