Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(3): 1899-1914, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37389796

RESUMO

The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.


Assuntos
Basidiomycota , Myrtus , Brasil , Cladosporium/genética , Basidiomycota/genética
2.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771517

RESUMO

Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.

3.
Biotechnol Lett ; 45(3): 387-400, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607515

RESUMO

OBJECTIVE: To evaluate the enzymatic and biocontrol capacity of native Trichoderma strains isolated from corn crops in Irapuato (state of Guanajuato) and Napízaro (state of Michoacán), Mexico. RESULTS: Six native strains from Irapuato and Napízaro were tested, with five of them identified as T. harzianum and one as T. tomentosum. The six strains qualitatively and quantitatively showed enzyme activity for cellulase and chitinase. The best results were obtained for strains IrV6SIC7 and MichV6S2C2 with 878 IU L-1 of chitinase and 1323 IU L-1 of cellulase, respectively. All Trichoderma strains acted antagonistically toward Fusarium oxysporum f.sp. cubense race 1 (FocR1), with percentages of inhibition that ranged from 9 to 54%. In addition, the microscopic analysis allowed visualizing the mechanisms of mycoparasitism and antibiosis by either IrV6SIC7 or MichV6S2C2. The latter effects indicate that the tested native Trichoderma strains isolated from corn crops possessed enzymatic mechanisms as a strategy for biocontrolling FocR1 strains. CONCLUSION: The enzyme production by the Trichoderma strains represents a potential biotechnological utilization for either agricultural or industrial purposes.


Assuntos
Celulase , Quitinases , Fusarium , Trichoderma , Zea mays , México , Doenças das Plantas
4.
Comput Struct Biotechnol J ; 19: 6212-6228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900134

RESUMO

Botrytis cinerea and Trichoderma atroviride are two relevant fungi in agricultural systems. To gain insights into these organisms' transcriptional gene regulatory networks (GRNs), we generated a manually curated transcription factor (TF) dataset for each of them, followed by a GRN inference utilizing available sequence motifs describing DNA-binding specificity and global gene expression data. As a proof of concept of the usefulness of this resource to pinpoint key transcriptional regulators, we employed publicly available transcriptomics data and a newly generated dual RNA-seq dataset to build context-specific Botrytis and Trichoderma GRNs under two different biological paradigms: exposure to continuous light and Botrytis-Trichoderma confrontation assays. Network analysis of fungal responses to constant light revealed striking differences in the transcriptional landscape of both fungi. On the other hand, we found that the confrontation of both microorganisms elicited a distinct set of differentially expressed genes with changes in T. atroviride exceeding those in B. cinerea. Using our regulatory network data, we were able to determine, in both fungi, central TFs involved in this interaction response, including TFs controlling a large set of extracellular peptidases in the biocontrol agent T. atroviride. In summary, our work provides a comprehensive catalog of transcription factors and regulatory interactions for both organisms. This catalog can now serve as a basis for generating novel hypotheses on transcriptional regulatory circuits in different experimental contexts.

5.
Braz J Microbiol ; 52(3): 1545-1556, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34138459

RESUMO

Mycogone perniciosa is a mycoparasite causing Wet Bubble Diseases (WBD) of Agaricus bisporus. In the present study, the whole genome of M. perniciosa strain MgR1 was sequenced using Illumina NextSeq500 platform. This sequencing generated 8.03 Gb of high-quality data and a draft genome of 39 Mb was obtained through a de novo assembly of the high-quality reads. The draft genome resulted into prediction of 9276 genes from the 1597 scaffolds. NCBI-based homology analysis revealed the identification of 8660 genes. Notably, non-redundant protein database analysis of the M. perniciosa strain MgR1 revealed its close relation with the Trichoderma arundinaceum. Moreover, ITS-based phylogenetic analysis showed the highest similarity of M. perniciosa strain MgR1 with Hypomyces perniciosus strain CBS 322.22 and Mycogone perniciosa strain PPRI 5784. Annotation of the 3917 genes of M. perniciosa strain MgR1 grouped in three major categories viz. biological process (2583 genes), cellular component (2013 genes), and molecular function (2919 genes). UniGene analysis identified 2967 unique genes in M. perniciosa strain MgR1. In addition, prediction of the secretory and pathogenicity-related genes based on the fungal database indicates that 1512 genes (16% of predicted genes) encode for secretory proteins. Moreover, out of 9276 genes, 1296 genes were identified as pathogenesis-related proteins matching with 51 fungal and bacterial genera. Overall, the key pathogenic genes such as lysine M protein domain genes, G protein, hydrophobins, and cytochrome P450 were also observed. The draft genome of MgR1 provides an understanding of pathogenesis of WBD in A. bisporus and could be utilized to develop novel management strategies.


Assuntos
Agaricus , Genoma Bacteriano , Hypocreales/genética , Filogenia
6.
Arch Microbiol ; 203(6): 3257-3268, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837802

RESUMO

This study aimed to identify four isolates of Trichoderma sp. (Ufra.T06, Ufra.T09, Ufra.T12, and Ufra.T52) and characterize their interaction with Magnaporthe oryzae in vitro and in vivo conditions. The four isolates of Trichoderma sp. were sequenced, investigated as an antagonist against M. oryzae in five Petri plate assays, and as an inhibitor of conidial germination appressoria formation. Finally, were quantified the lytic activity of chitinase (CHI), glucanase (GLU), and protease (PRO) during co-cultivation of Trichoderma sp. and M. oryzae. In vivo, leaf blast suppression was evaluated in two assays: simultaneous and curative application. Both in vitro and in vivo assays were scanned by electron microscopy (SEM). All isolates were identified as Trichoderma asperellum. All in vitro Petri plates assays reduced M. oryzae colony growth (paired-91.18% by Ufra.T09, volatile metabolites-all isolates equally reduced, non-volatile-68.33% by Ufra.T06, thermostability-99.77% by Ufra.T52 and co-cultivate-64.25% by Ufra.T52). The filtrates and conidia suspensions for T. asperellum isolates inhibited the conidia germination and appressoria formation significantly. In co-cultivate (mycelial or cell wall), all enzymes (GLU, CHI, and PRO) and times (24, 48, and 72 h) showed increased activity. In vivo, reduced leaf blast severity until 94.64% (Ufra.T52cs) in a simultaneous and until 85% (Ufra.T09 24 and 48 hasi) in a curative application. T. asperellum isolates showed efficient control of M. oryzae by mycoparasitism, and antibiosis mechanisms were interfered with by the M. oryzae infection process.


Assuntos
Antibiose , Ascomicetos , Hypocreales , Oryza , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Hypocreales/genética , Hypocreales/ultraestrutura , Oryza/microbiologia , Doenças das Plantas/microbiologia
7.
Fungal Genet Biol ; 136: 103292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730908

RESUMO

Ras-GTPases are nucleotide hydrolases involved in key cellular processes. In fungi, Ras-GTPases regulate conidiation, development, virulence, and interactions with other fungi or plants. Trichoderma spp. are filamentous saprophytic fungi, widely distributed along all latitudes, characterized by their rapid growth and metabolic diversity. Many species of this genus interact with other fungi, animals or plants. Furthermore, these fungi are used as biocontrol agents due to their ability to antagonize phytopathogenic fungi and oomycetes, through competence, antibiosis, and parasitism. However, the genetic and molecular regulation of these processes is scarcely described in these fungi. In this work, we investigated the role of the gene tbrg-1 product (GenBank accession number XP_013956100; JGI ID: Tv_70852) of T. virens during its interaction with other fungi and plants. Sequence analyses predicted that TBRG-1 bears the characteristic domains of Ras-GTPases; however, its size (1011 aa) is 3- to 4-times bigger compared with classical GTPases. Interestingly, phylogenetic analyses grouped the TBRG-1 protein with hypothetical proteins of similar sizes, sharing conserved regions; whereas other known Ras-GTPases were perfectly grouped with their respective families. These facts led us to classify TBRG-1 into a new family of Ras-GTPases, the Big Ras-GTPases (BRG). Therefore, the gene was named tbrg-1 (TrichodermaBigRas-GTPase-1). Quantification of conidia and scanning electron microscopy showed that the mutants-lacking tbrg-1 produced less conidia, as well as a delayed conidiophore development compared to the wild-type (wt). Moreover, a deregulation of conidiation-related genes (con-10, con-13, and stuA) was observed in tbrg-1-lacking strains, which indicates that TBRG-1 is necessary for proper conidiophore and conidia development. Furthermore, the lack of tbrg-1 affected positively the antagonistic capability of T. virens against the phytopathogens Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum, which was consistent with the expression patterns of mycoparasitism-related genes, sp1 and cht1, that code for a protease and for a chitinase, respectively. Furthermore, the antibiosis effect of mycelium-free culture filtrates of Δtbrg-1 against R. solani was considerably enhanced. The expression of secondary metabolism-related genes, particularly gliP, showed an upregulation in Δtbrg-1, which paralleled an increase in gliotoxin production as compared to the wt. These results indicate that TBRG-1 plays a negative role in secondary metabolism and antagonism. Unexpectedly, the biocontrol activity of Δtbrg-1 was ineffective to protect the tomato seeds and seedlings against R. solani. On the contrary, Δtbrg-1 behaved like a plant pathogen, indicating that TBRG-1 is probably implicated in the recognition process for establishing a beneficial relationship with plants.


Assuntos
Hypocrea/enzimologia , Hypocrea/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Antibiose/genética , Basidiomycota/crescimento & desenvolvimento , Agentes de Controle Biológico , DNA Fúngico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Hypocrea/crescimento & desenvolvimento , Interações Microbianas/genética , Mutação , Filogenia , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Metabolismo Secundário/genética , Esporos Fúngicos/genética
8.
Fungal Genet Biol ; 134: 103281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626987

RESUMO

Cadmium (Cd) is a heavy metal present in the environment mainly as a result of industrial contamination that can cause toxic effects to life. Some microorganisms, as Trichoderma harzianum, a fungus used in biocontrol, are able to survive in polluted environments and act as bioremediators. Aspects about the tolerance to the metal have been widely studied in other fungi although there are a few reports about the response of T. harzianum. In this study, we determined the effects of cadmium over growth of T. harzianum and used RNA-Seq to identify significant genes and processes regulated in the metal presence. Cadmium inhibited the fungus growth proportionally to its concentration although the fungus exhibited tolerance as it continued to grow, even in the highest concentrations used. A total of 3767 (1993 up and 1774 down) and 2986 (1606 up and 1380 down) differentially expressed genes were detected in the mycelium of T. harzianum cultivated in the presence of 1.0 mg mL-1 or 2.0 mg mL-1 of CdCl2, respectively, compared to the absence of the metal. Of these, 2562 were common to both treatments. Biological processes related to cellular homeostasis, transcription initiation, sulfur compound biosynthetic and metabolic processes, RNA processing, protein modification and vesicle-mediated transport were up-regulated. Carbohydrate metabolic processes were down-regulated. Pathway enrichment analysis indicated induction of glutathione and its precursor's metabolism. Interestingly, it also indicated an intense transcriptional induction, especially by up-regulation of spliceosome components. Carbohydrate metabolism was repressed, especially the mycoparasitism-related genes, suggesting that the mycoparasitic ability of T. harzianum could be affected during cadmium exposure. These results contribute to the advance of the current knowledge about the response of T. harzianum to cadmium exposure and provide significant targets for biotechnological improvement of this fungus as a bioremediator and a biocontrol agent.


Assuntos
Cádmio/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Hypocreales/efeitos dos fármacos , Hypocreales/genética , Transcriptoma/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Hypocreales/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/crescimento & desenvolvimento , Modificação Traducional de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos
9.
Microbiol Res ; 227: 126296, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421712

RESUMO

Heat shock proteins (Hsp) are important factors in the response of organisms to oscillations in environmental conditions. Although Hsp have been studied for a long time, little is known about this protein class in Trichoderma species. Here we studied the expression of Hsp genes during T. asperellum growth, and mycoparasitism against two phytopathogens: Sclerotinia sclerotiorum and Fusarium oxysporum, as well as during thermal stress. The expression levels of these genes were observed by real-time PCR and they showed to be differentially expressed under these conditions. We verified that the TaHsp26c, TaHsp70b and TaHsp70c genes were differentially expressed over time, indicating that these genes can be developmentally regulated in T. asperellum. Except for TaHsp26a, all other genes analyzed were induced in the post-contact condition when T. asperellum was cultured in a confrontation plate assay against itself. Additionally, TaHsp26b, TaHsp26c, TaHsp90, TaHsp104a and TaHsp104b were induced during initial contact between T. asperellum hyphae, suggesting that these proteins must play a role in the organism´s self-recognition mechanism. When we examined gene expression during mycoparasitism, we observed that some genes were induced both by S. sclerotiorum and F. oxysporum, while others were not induced during interaction with either of the phytopathogens. Furthermore, we observed some genes induced only during confrontation against S. sclerotiorum, indicating that the expression of Hsp genes during mycoparasitism seems to be modulated by the phytopathogen. To assess whether such genes are expressed during temperature oscillations, we analyzed their transcription levels during thermal and cold shock. We observed that except for the TaHsp70c gene, all others presented high transcript levels when T. asperellum was submitted to high temperature (38 °C), indicating their importance in the response to heat stress. The TaHsp70c gene was significantly induced only in cold shock at 4 °C. Our results show the importance of Hsp proteins during self-recognition, mycoparasitism and thermal stress in T. asperellum.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Trichoderma/genética , Sequência de Aminoácidos , Ascomicetos/genética , Fusarium/genética , Resposta ao Choque Térmico/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Interações Microbianas , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Estresse Fisiológico/genética , Temperatura , Transcriptoma , Trichoderma/crescimento & desenvolvimento
10.
Acta biol. colomb ; 23(3): 235-241, sep.-dic. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-973440

RESUMO

ABSTRACT The adaptability of endophytic fungi to their hosts, the ecological benefits that it provides and the various antagonistic mechanisms against pests make them an alternative for the biological control of diseases. The potential of 17 strains of foliar endophytic fungi (FEF) obtained from healthy Theobroma cacao tissue as candidates for the biological control of Moniliophthora roreri (MR) and M. perniciosa (MP) was determined. We evaluated: i) mycoparasitism of FEF against colonies of Moniliophthora spp., ii) the effects of crude metabolites of FEF on the pathogens' growth, and iii) the ability to recolonize healthy leaves of the host by leaf assays. Three strains of Lasiodiplodia theobromae were the most promising: Ec098, Ec151 and Ec157. These strains inhibited the growth of MR and MP, both in the confrontation of the colonies and by their metabolites and, additionally, recolonized the host between 80-100 % of the time. Other strains showed outstanding values i n one indicator, and not desirable in others. For example, Ec035 (L. theobromae) showed the highest levels of mycoparasitism against both pathogens in the interaction of the colonies, and the second best for its metabolites, but could not reinfect the host. Strain Ec059 (Xylaria feejeensis) reinfected 100 %, but did not show desirable attributes of antagonism. On the other hand, the metabolites of Ec107 (Colletotrichum gloeosporioides s.l.) inhibited MR by 60 %, but also stimulated the growth of MP. No strain achieved all desirable characteristics for a biological control agent.


RESUMEN La adaptabilidad de los hongos endófitos a sus hospedantes, los beneficios ecológicos que le brinda y los diversos mecanismos antagónicos contra plagas que poseen los convierten en una alternativa para el control biológico de enfermedades. Se determinó el potencial de 17 cepas de hongos endofíticos foliares (FEF) obtenidas de tejido sano de Theobroma cacao como candidatas para el control biológico de Moniliophthora roreri (MR) y M. perniciosa (MP). Se evaluaron: i) el micoparasitismo de los FEF frente a colonias de Moniliophthora spp., ii) la acción de los metabolitos crudos de los FEF en el crecimiento, y iii) la habilidad para recolonizar hojas sanas del hospedante mediante ensayos de hojas sueltas. Tres cepas de Lasiodiplodia theobromae fueron las más promisorias: Ec098, Ec151 and Ec157. Estas cepas inhibieron el crecimiento de MR y MP, tanto en el enfrentamiento de las colonias como mediante sus metabolitos y, adicionalmente, recolonizaron el hospedante entre el 80-100 % de las veces. Otras cepas mostraron valores destacados en un indicador, y no deseables en otros. Por ejemplo, la Ec035 (L. theobromae) mostró los niveles más altos de micoparasitismo contra ambos patógenos en la interacción de las colonias, y el segundo mejor por sus metabolitos, pero no pudo reinfectar el hospedante. La cepa Ec059 (Xylaria feejeensis) reinfectó 100 %, pero no mostró los atributos deseados de antagonismo. Por su parte, los metabolitos de Ec107 (Colletotrichum gloeosporioides s.l.) inhibieron a MR en un 60 %, pero también estimularon el crecimiento de MP. Ninguna cepa logró todas las características deseables para un agente de control biológico.

11.
Front Plant Sci ; 8: 880, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611802

RESUMO

Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

12.
BMC Genet ; 18(1): 16, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28201981

RESUMO

BACKGROUND: Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. RESULTS: We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. CONCLUSIONS: Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.


Assuntos
Arabidopsis/microbiologia , Proteínas Fúngicas/genética , Rhizoctonia/fisiologia , Trichoderma/fisiologia , Biologia Computacional , Resistência à Doença , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Raízes de Plantas/microbiologia , Trichoderma/genética
13.
Antonie Van Leeuwenhoek ; 110(4): 593-605, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28040855

RESUMO

Leaf-cutter ants cultivate and feed on the mutualistic fungus, Leucoagaricus gongylophorus, which is threatened by parasitic fungi of the genus Escovopsis. The mechanism of Escovopsis parasitism is poorly understood. Here, we assessed the nature of the antagonism of different Escovopsis species against its host. We also evaluated the potential antagonism of Escovopsioides, a recently described fungal genus from the attine ant environment whose role in the colonies of these insects is unknown. We performed dual-culture assays to assess the interactions between L. gongylophorus and both fungi. We also evaluated the antifungal activity of compounds secreted by the latter on L. gongylophorus growth using crude extracts of Escovopsis spp. and Escovopsioides nivea obtained either in (1) absence or (2) presence of the mutualistic fungus. The physical interaction between these fungi and the mutualistic fungus was examined under scanning electron microscopy (SEM). Escovopsis spp. and E. nivea negatively affected the growth of L. gongylophorus, which was also significantly inhibited by both types of crude extract. These results indicate that Escovopsis spp. and E. nivea produce antifungal metabolites against the mutualistic fungus. SEM showed that Escovopsis spp. and E. nivea maintained physical contact with the mutualistic fungus, though no specialised structures related to mycoparasitism were observed. These results showed that Escovopsis is a destructive mycoparasite that needs physical contact for the death of the mutualistic fungus to occur. Also, our findings suggest that E. nivea is an antagonist of the ant fungal cultivar.


Assuntos
Agaricales/metabolismo , Antibiose/fisiologia , Antifúngicos/metabolismo , Formigas/microbiologia , Extratos Celulares/farmacologia , Hypocreales/patogenicidade , Animais , Técnicas de Cocultura , Microscopia Eletrônica de Varredura , Simbiose/fisiologia
14.
Rev. colomb. biotecnol ; 14(1): 208-215, ene.-jun. 2012. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-656953

RESUMO

En el presente trabajo, se describe la caracterización respecto al pH y temperatura de extractos semipurificados mediante ultrafiltración escalonada de las enzimas fitasa, celulasa y xilanasa de Aspergillus ficuum cepa DSM 932 producidos en fermentación en estado sólido (en adelante SSF) y usando torta de canola como sustrato. La fitasa presentó un pH y una temperatura óptima de 5.0 y 60ºC respectivamente, en tanto que la celulasa presentó un pH óptimo de 7.0 con una temperatura óptima de 60°C y el extracto de xilanasa un pH óptimo de 5.4 y una temperatura óptima de 45°C.(


This paper, describes the characterization respect to pH and temperature of semi-purified extracts by ultrafiltration step of the enzymes phytase, cellulase and xylanase produced by Aspergillus ficuum DSM 932 strain, in solid state fermentation (SSF) using cold-pressed canola cake as substrate. Phytase showed the optimal pH and temperature 6.0 and 60°C, respectively, while cellulase showed a pH optimal of 7.0 with an optimal temperature of 60°C and xylanase extract an optimal pH of 5.4 and an optimal temperature of 45°C.


Assuntos
Aspergillus , Celulase , Enzimas , Ensaios Enzimáticos
15.
Braz. j. microbiol ; Braz. j. microbiol;41(3): 700-706, Oct. 2010. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-549426

RESUMO

The aim of this research was the analysis of the possible antagonistic effect of Penicillium oxalicum over the pathogen rice fungus A. alternata under different conditions of temperature, water activity and culture media. The macroscopic study of the dual growth revealed that according to the Index of Dominance P. oxalicum was more competitive that A. alternata at 25ºC whereas at 15ºC was this species. Microscopic analysis showed that P. oxalicum was a mycoparasite of A. alternata at all conditions tested. The antagonist penetrated into A. alternata and disintegrated its conidiophores and conidia. The results suggests that P. oxalicum may be a possible biological control agent of the rice pathogens in a future.


Assuntos
Alternaria/crescimento & desenvolvimento , Alternaria/isolamento & purificação , Oryza , Penicillium/patogenicidade , Amostras de Alimentos , Métodos , Métodos , Virulência
16.
Braz J Microbiol ; 41(3): 700-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031546

RESUMO

The aim of this research was the analysis of the possible antagonistic effect of Penicillium oxalicum over the pathogen rice fungus A. alternata under different conditions of temperature, water activity and culture media. The macroscopic study of the dual growth revealed that according to the Index of Dominance P. oxalicum was more competitive that A. alternata at 25°C whereas at 15°C was this species. Microscopic analysis showed that P. oxalicum was a mycoparasite of A. alternata at all conditions tested. The antagonist penetrated into A. alternata and disintegrated its conidiophores and conidia. The results suggests that P. oxalicum may be a possible biological control agent of the rice pathogens in a future.

17.
Artigo em Inglês | VETINDEX | ID: vti-444621

RESUMO

The aim of this research was the analysis of the possible antagonistic effect of Penicillium oxalicum over the pathogen rice fungus A. alternata under different conditions of temperature, water activity and culture media. The macroscopic study of the dual growth revealed that according to the Index of Dominance P. oxalicum was more competitive that A. alternata at 25ºC whereas at 15ºC was this species. Microscopic analysis showed that P. oxalicum was a mycoparasite of A. alternata at all conditions tested. The antagonist penetrated into A. alternata and disintegrated its conidiophores and conidia. The results suggests that P. oxalicum may be a possible biological control agent of the rice pathogens in a future.

18.
Artigo em Inglês | VETINDEX | ID: vti-444567

RESUMO

The aim of this research was the analysis of the possible antagonistic effect of Penicillium oxalicum over the pathogen rice fungus A. alternata under different conditions of temperature, water activity and culture media. The macroscopic study of the dual growth revealed that according to the Index of Dominance P. oxalicum was more competitive that A. alternata at 25ºC whereas at 15ºC was this species. Microscopic analysis showed that P. oxalicum was a mycoparasite of A. alternata at all conditions tested. The antagonist penetrated into A. alternata and disintegrated its conidiophores and conidia. The results suggests that P. oxalicum may be a possible biological control agent of the rice pathogens in a future.

19.
Bol. micol ; 24: 51-56, dic. 2009. ilus
Artigo em Espanhol | LILACS | ID: lil-585743

RESUMO

Se describe un caso de micoparasitismo biotrófico de ocurrencia natural en el suelo, entre las hifas de una cepa de Fusarium oxysporum complex y Cunninghamella sp. Las hifas de F. oxysporum se desarrollaron sobre las células vivas del hospedador, mostrando 2 tipos de efectos parasíticos: uno de enrollamiento y otro de contacto con penetración de las hifas, sin la aparente eliminación del hospedador. Esta situación poco común en la literatura, demuestra las capacidades adaptativas de esta especie al micoparasitismo en grupos filogenéticamente distantes.


This paper describes a case of mycoparasitism naturally occurring, where Fusarium oxysporum parasitizes hyphae of Cunninghamella sp, to show mycoparasitism between the two fungi. This is a case of biotrophic mycoparasitism by contact. The hyphae of F. oxysporum developed closely along the living cells of the host showing mycoparasitic effect, some for a loop, and other contact with penetration of the hyphae. This situation is rare in the literature, demonstrates the adaptive capacities of this species to mycoparasitism in phylogenetically distant groups.


Assuntos
Cunninghamella/isolamento & purificação , Cunninghamella/classificação , Cunninghamella/crescimento & desenvolvimento , Cunninghamella/patogenicidade , Fusarium/isolamento & purificação , Fusarium/classificação , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Fusarium/virologia , Interações Hospedeiro-Parasita , Fungos , Solo
20.
Rev. Soc. Venez. Microbiol ; 29(1): 34-38, jun. 2009. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-631633

RESUMO

La podredumbre blanda (Rhyzopus stolonifer), la podredumbre negra (Mucor spp., Aspergillus niger y Pythium spp.) son las enfermedades postcosecha más comunes de la fresa (Fragaria spp.) y generan grandes pérdidas de estas. Durante muchos años se han utilizado fungicidas sintéticos para controlar a estos patógenos, pero se ha demostrado que se hacen resistentes a dichos productos, además de representar un riesgo potencial al ambiente y la salud humana. Todo esto ha conllevado a la búsqueda de alternativas naturales como el empleo de extractos vegetales y antagonistas microbianos, siendo Trichoderma harzianum el antagonista mas utilizado como control biológico. El objetivo de este estudio fue determinar el efecto antagónico de T. harzianum sobre algunos hongos patógenos postcosecha en fresa y conocer su mecanismo de acción. Las muestras de fresa fueron transportadas al laboratorio en los mismos empaques de venta, y posteriormente las fresas fueron colocadas en cámaras de germinación controlando la humedad para el desarrollo rápido de hongos presentes en la fruta. Se identificaron los hongos Rhyzopus stolonifer, Mucor spp., Penicillium digitatum, Rhizoctonia solani, Aspergillus niger y Pythium spp., sobre los cuales se realizó la prueba de antagonismo usando al hongo T. harzianum. La velocidad de crecimiento del biocontrolador fue mayor que el crecimiento de los hongos postcosecha (p<0,01) y a las 96 horas de incubación la caja de Petri estaba completamente cubierta y en la zona de encuentro entre éstos se observó que el mecanismo de acción del biocontrolador fue de tipo micoparasítico. T. harzianum resultó ser un excelente controlador in vitro de hongos postcosecha de frutos de fresa.


Soft rotting (Rhyzopus stolonifer) and black rotting (Mucor spp., Aspergillus niger and Pythium spp.) are the most common post harvesting strawberry (Fragaria spp.) diseases, generating great losses. During many years synthetic fungicides have been used to control these pathogens, but their development of resistance to these products has been demonstrated, following to the fact that they represent a potential environmental and human health risk. This has lead to the search of natural alternatives such as the use of vegetal extracts and microbial antagonists, being Trichoderma harzianum the antagonist most widely used as biological control. The purpose of this study was to determine the antagonist effect of T. harzianum over some post strawberry harvesting pathogens and determine their mechanism of action. The strawberry samples were transported to the laboratory in the same packages in which they were sold, and then were placed in germination chambers, controlling humidity to obtain a rapid development of the fungi present in the fruit. We identified the following fungi:  Rhyzopus stolonifer, Mucor spp., Penicillium digitatum, Rhizoctonia solani, Aspergillus niger and Phytium spp., which were tested for antagonism, using the T. harzianum. The growth speed of the biocontroller was greater than that of the post harvest fungi (p<0,01) and at 96 hours of incubation the Petri dish was completely covered, and the encounter area between them showed that the action mechanism of the biocontroller was of the mycoparasitic type. T. harzianum turned out to be an excellent in vitro controller of post strawberry harvest fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA