Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 279: 126609, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39106647

RESUMO

Acebutolol (ACE) is commonly used to treat hypertension and high blood pressure. Large doses of ACE can have adverse effects with potentially life-threatening consequences. It is, therefore, essential to develop a simple, low-cost, reliable, and reproducible device for detecting ACE in biofluids. This study explores the potential of unique two-dimensional nano-flakes, such as tungsten trioxide (WO3). Graphene oxide (GO) typically exhibits lower electrical conductivity than pristine graphene due to the presence of oxygen-containing functional groups that interfere with the π-conjugated structure. Functionalizing GO with tannic acid (TA) can partially reinstate the π-conjugation and limit the amount of oxygen, resulting in enhanced electrical conductivity. Ultrasonic techniques were utilized to create WO3 NFs@TA-rGO, and a range of spectroscopic and microscopic methods were applied to examine the formation of the resulting WO3 NFs@TA-rGO nanocomposites. Under optimal conditions, modified sensors resulted in lower limits of detection (0.0055 µM) and good sensitivity (0.40 µA µM-1 cm-2). They also exhibited a broad linear range spanning from 0.009 to 568.6 µM. Fabricated sensors have significant anti-interference properties with high specificity and excellent storage stability (RSD = 4.3 %), reproducibility (RSD = 3.9 %), and repeatability (RSD = 3.3 %). Ultimately, the sensor's efficacy was confirmed through the successful detection of ACE in biological samples (with recoveries ranging from 99.1 to 99.6 %). Lastly, this study highlights the substantial potential of ACE detection and extends its applications in biomedical diagnostics and pharmaceutical research.

2.
Nanotechnology ; 35(41)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991513

RESUMO

Among the experimental realization of fault-tolerant topological circuits are interconnecting nanowires with minimal disorder. Out-of-plane indium antimonide (InSb) nanowire networks formed by merging are potential candidates. Yet, their growth requires a foreign material stem usually made of InP-InAs. This stem imposes limitations, which include restricting the size of the nanowire network, inducing disorder through grain boundaries and impurity incorporation. Here, we omit the stem allowing for the growth of stemless InSb nanowire networks on an InP substrate. To enable the growth without the stem, we show that a preconditioning step using arsine (AsH3) is required before InSb growth. High-yield of stemless nanowire growth is achieved by patterning the substrate with a selective-area mask with nanohole cavities, containing restricted gold droplets from which nanowires originate. Interestingly, these nanowires are bent, posing challenges for the synthesis of interconnecting nanowire networks due to merging failure. We attribute this bending to the non-homogeneous incorporation of arsenic impurities in the InSb nanowires and the interposed lattice-mismatch. By tuning the growth parameters, we can mitigate the bending, yielding large and single crystalline InSb nanowire networks and nanoflakes. The improved size and crystal quality of these nanostructures broaden the potential of this technique for fabricating advanced quantum devices.

3.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057889

RESUMO

We report a two-step growth process of MoS2 nanoflakes using a low-pressure chemical vapor deposition technique. In the first step, a MoS2 layer was synthesized on a c-plane sapphire substrate. This layer was subsequently re-evaporated at a higher temperature to form mono- or few-layer MoS2 flakes. As a result, the close proximity re-evaporation enabled the growth of pristine MoS2 nanoflakes. Atomic force microscopy analysis confirmed the synthesis of nanoclusters/nanoflakes with lateral dimensions of over 10 µm and a flake height of approximately 1.3 nm, demonstrating bi-layer MoS2, whereas transmission electron microscopy analysis revealed triangular MoS2 nanoflakes, with a diffraction pattern proving the presence of single crystalline hexagonal MoS2. Raman data revealed the typical modes of high-quality MoS2 nanoflakes. Finally, we presented the photocurrent dependence of a MoS2-based photoresist under illumination with light-emitting diode of 405 nm wavelength. The measured current-voltage dependence across various luminous flux outlined the sensitivity of MoS2 to polarized light and thus opens further opportunities for applications in high-performance photodetectors with polarization sensitivity.

4.
J Colloid Interface Sci ; 675: 347-356, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972122

RESUMO

Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.

5.
Environ Sci Pollut Res Int ; 31(32): 45383-45398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963620

RESUMO

To solve environmental-related issues (wastewater remediation, energy conservation and air purification) caused by rapid urbanization and industrialization, synthesis of novel and modified nanostructured photocatalyst has received increasing attention in recent years. We herein report the facile synthesis of in situ nitrogen-doped chemically anchored TiO2 with graphene through sol-gel method. The structural analysis using X-ray diffraction showed that the crystalline nitrogen-doped graphene-titanium dioxide (N-GT) nanocomposite is mainly composed of anatase with minor brookite phase. Raman spectroscopy revealed the graphene characteristic band presence at low intensity level in addition to the main bands of anatase TiO2. X-ray photoelectron spectroscopy analysis disclosed the chemical bonding of TiO2 with graphene via Ti-O-C linkage, also the substitution of nitrogen dopant in both TiO2 lattice and into the skeleton of graphene nanoflakes. UV-Vis absorption spectroscopy analysis established that the modified material can efficiently absorb the longer wavelength range photons due to its narrowed band gap. The N0.06-GT material showed the highest degradation efficiency over methylene blue (MB, ∼98%) under UV and sulfamethoxazole (SMX, ∼ 90.0%) under visible light irradiation. The increased activity of the composite is credited to the synergistic effect of high surface area via greater adsorption capacity, narrowed band gap via increased photon absorption, and reduced e-/h+ recombination via good electron acceptability of graphene nanoflakes and defect sites (Ti3+ and oxygen vacancy (Vo)). The ROS experiments further depict that primarily hydroxyl radicals (OH•) and superoxide anions (O2•-) are responsible for the pollutant degradation in the process redox reactions. In summary, our findings specify new insight into the fabrication of this new material whose efficiency can be further tested in applications like H2 production, CO2 conversion to value-added products, and in energy conservation and storage.


Assuntos
Grafite , Nitrogênio , Titânio , Grafite/química , Titânio/química , Nitrogênio/química , Catálise , Poluentes Químicos da Água/química
6.
ACS Nano ; 18(28): 18712-18728, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38952208

RESUMO

Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.


Assuntos
Neoplasias Encefálicas , Membrana Celular , Células Dendríticas , Imunoterapia , Raios Infravermelhos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Animais , Camundongos , Humanos , Membrana Celular/química , Linhagem Celular Tumoral , Micelas , Nanopartículas/química , Terapia Fototérmica , Polietilenoglicóis/química , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Apoptose/efeitos dos fármacos
7.
ACS Appl Mater Interfaces ; 16(31): 40914-40926, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39049176

RESUMO

Nanoplastics (NPs) generated from plastic debris weathering pose a significant threat to ecosystems. The ubiquity of plastics driven by their advantageous physical properties, necessitates the development of efficient degradation and removal methods. Polystyrene (PS), a common and hazardous aquatic NP is a long-chain hydrocarbon with alternating phenyl groups. This study investigates the photooxidative degradation of PS NPs under UV light irradiation using synthesized MoO3 nanoflakes, nanobelts, and MoO3/SWCNT nanocomposites. Raman spectroscopy, X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray, Brunauer-Emmett-Teller, and UV-vis spectroscopy were employed to characterize the photocatalyst. Field emission scanning electron microscopy was used to visualize morphological changes in the spherical PS NPs upon interaction with the photocatalysts. MoO3 nanoflakes acting as a photocatalyst under UV irradiation for 24 h achieved an impressive degradation efficiency exceeding 19%. This treatment significantly reduced the average diameter of PS NPs from 220 to 178 nm. Notably, even higher degradation efficiencies were observed with MoO3 nanobelts and nanocomposites as a complete change in the spherical morphology of PS NPs is observed. Fourier transform infrared spectroscopy elucidated the chemical transformations of PS during degradation. The observed changes in PS NPs structure due to photocatalytic oxidation at different time intervals indicate a promising approach.

8.
ACS Appl Mater Interfaces ; 16(27): 35525-35540, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934269

RESUMO

Nowadays, volatile organic compound (VOC) detection is imperative to ensure environmental safety in industry and indoor environments, as well as to monitor human health in medical diagnosis. Gas sensors with the best sensor response, selectivity, and stability are in high demand. Simultaneously, the advancement of nanotechnology facilitates novel nanomaterial-based gas sensors with superior sensor characteristics and low power consumption. Recently, boron nitride, a 2D material, has emerged as an excellent candidate for gas sensing and demonstrated exceptional sensing characteristics for new-generation gas sensing devices. Herein, ultrathin porous boron nitride nanosheets (BNNSs) with large lateral sizes were synthesized using a facile synthesis approach, and their material characteristics were investigated utilizing a variety of analytical techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. A BNNS-coated cladding-modified fiber optic sensor (FOS) probe was prepared and employed for VOC (ammonia, ethanol, and acetone) sensing across concentrations varying from 0 to 300 ppm. The BNNSs-coated FOS demonstrated better selectivity toward 300 ppm ammonia, and specifically annealed BNNSs displayed a maximum sensor response of 55% along with a response/recovery times of 15 s/34 s compared to its counterparts. The superior ammonia sensing performances could be attributed to the formation of ultrathin nanosheets and a porous surface with slit-like features in hexagonal boron nitride.

9.
ACS Appl Mater Interfaces ; 16(19): 24781-24795, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695117

RESUMO

Aqueous zinc-ion batteries (ZIBs) are regarded as a type of promising energy-storage device because of their high safety and low cost, and polyaniline (PANI) is normally employed as a cathode material for ZIBs owing to its unique electrochemical properties and high environmental stability. However, a low specific capacity and a short cycle life limit the development and applications of PANI-based electrodes. Herein, we have developed a novel type of highly stable PANI-based cathode material enabled by phosphene (PR) for aqueous Zn-PANI batteries through in situ chemical oxidative polymerization. The introduction of PR nanoflakes not only inhibits the degradation of PANI and generates more active sites for Zn2+ storage but also enables a synergistic effect of the Zn2+ insertion/extraction and P-Zn alloying reaction. This promotes a high reversible specific capacity of 240.2 mAh g-1 at 0.2 A g-1 and excellent rate performance for the PR/PANI nanocomposite cathode material. Compared to the pristine PANI cathode material, the PR/PANI nanocomposite cathode material is more suitable for the Zn-PANI battery, thanks to its higher specific capacity and better cycle stability. This study provides an innovative approach for developing the next generation of reliable PR-based electrode materials for aqueous energy-storage devices.

10.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740454

RESUMO

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Assuntos
Antioxidantes , Compostos de Manganês , Óxidos , Óxidos/química , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Compostos de Manganês/química , Colorimetria , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredução , Nanoestruturas/química , Catálise
11.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664493

RESUMO

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Assuntos
Antibacterianos , Antineoplásicos , Bismuto , Nanocompostos , Compostos de Tungstênio , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Bismuto/química , Bismuto/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Nanotubos de Carbono/química , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2
12.
Anal Chim Acta ; 1301: 342464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553122

RESUMO

BACKGROUND: Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS: Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 µg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 µg mL-1. SIGNIFICANCE: Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.


Assuntos
Técnicas Biossensoriais , Praguicidas , Piperidinas , Humanos , Praguicidas/análise , Acetilcolina/química , Acetilcolinesterase/química , Compostos Organofosforados/análise , Peróxido de Hidrogênio/química , Catálise , Técnicas Biossensoriais/métodos
13.
ACS Appl Mater Interfaces ; 16(14): 18052-18062, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546439

RESUMO

Electrochromic materials allow for optical modulation and have attracted much attention due to their bright future in applications such as smart windows and energy-saving displays. Two-dimensional (2D) molybdenum oxide nanoflakes with combined advantages of high active specific surface area and natural layered structure should be highly potential candidates for electrochromic devices. However, the efficient top-down preparation of 2D MoO3 nanoflakes is still a huge challenge and the sluggish ionic kinetics hinder its electrochromic performance. Herein, we demonstrated a feasible thiourea-assisted exfoliation procedure, which can not only increase the yield but also reduce the thickness of 2D MoO3-x nanoflakes down to a few nanometers. Furthermore, electrophoretic-deposited MoO3-x nanoflakes were combined with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-conjugated polymer to simultaneously enhance the ionic kinetics and electronic conductivity, with a diffusion coefficient of 3.09 × 10-10 cm2 s-1 and a charge transport resistance of 33.7 Ω. The prepared 2D MoO3-x/PEDOT:PSS composite films exhibit improved electrochromic performance, including fast switching speed (7 s for bleaching, 5 s for coloring), enhanced coloration efficiency (87.1 cm2 C-1), and large transmittance modulation (ΔT = 65%). This study shows outstanding potential for 2D MoO3-x nanoflakes in electrochromic applications and opens new avenues for optimizing the ion transport in inorganic-organic composites, which will be possibly inspired for other electrochemical devices.

14.
Chemosphere ; 352: 141340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301836

RESUMO

Nanoarchitectured design of the metal sulfides with highly available surface and abundant electroactive centers and using them as electrocatalyst for fabricate the electrochemical sensors for the detection of hydrazine (N2H4) and hydrogen peroxide (H2O2) is challenging and desirable. Herein, Cu2O nanospheres powder is firstly prepared using chemical reduction of copper chloride and then drop-casted on the glassy carbon electrode (GCE) surface. In the next step, CoFeS nanoflakes are electrodeposited on Cu2O nanospheres by cyclic voltammetry method to form CoFeS/Cu2O nanocomposite as a detection platform for measuring N2H4 and H2O2. Accordingly, Cu2O nanospheres are not only used as substrate, but also guided the CoFeS nanoflakes to adhere to the electrode surface without need to any binder or conductive additive, which enhances the electrical conductivity of the sensing active materials. As the hydrazine sensor, the CoFeS/Cu2O/GCE displayed wide linear ranges (0.0001-0.021 mM and 0.021-1.771 mM), low detection limit (0.12 µM), very high sensitivities (103.33 and 21.23 mA mM-1 cm-2), and excellent selectivity. The as-made nanocomposite also exhibited low detection limit of 1.26 µM for H2O2 sensing with very high sensitivities (12.31 and 3.96 mA mM-1 cm-2) for linear ranges of 0.001-0.03 mM and 0.03-2.03 mM, respectively, and negligible response against interfering substances. The superior analytical performance of the CoFeS/Cu2O for N2H4 electro-oxidation and H2O2 electro-reduction can be attributed to structure stability, high electroactive surface area, and good availability to analyte species and electrolyte diffusion. Moreover, to examine the potency of the prepared nanocomposite in real applications, the seawater sample was analyzed and results display that the CoFeS/Cu2O/GCE can be utilized as a reliable and applicable platform for measuring N2H4 and H2O2.


Assuntos
Peróxido de Hidrogênio , Nanosferas , Peróxido de Hidrogênio/química , Cobre/química , Galvanoplastia , Carbono/química , Eletrodos , Técnicas Eletroquímicas/métodos
15.
ACS Appl Mater Interfaces ; 15(50): 58260-58273, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051559

RESUMO

Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Microglia , Proteômica , Glioblastoma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/patologia , Membrana Celular/patologia , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral
16.
Nano Lett ; 23(22): 10512-10521, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930183

RESUMO

Two-dimensional (2D) bismuthene is predicted to possess intriguing physical properties, but its preparation remains challenging due to the high surface energy constraint. Herein, we report a sandwiched epitaxy growth strategy for the controllable preparation of 2D bismuthene between a Cu foil substrate and a h-BN covering layer. The top h-BN layer plays a crucial role in suppressing the structural transformation of bismuthene and compensating for the charge transfer from the bismuthene to the Cu(111) surface. The bismuthene nanoflakes present a superior thermal stability up to 500 °C in air, attributed to the passivation effect of the h-BN layer. Moreover, the bismuthene nanoflakes demonstrate an ultrahigh faradaic efficiency of 96.3% for formate production in the electrochemical CO2 reduction reaction, which is among the highest reported for Bi-based electrocatalysts. This study offers a promising approach to simultaneously synthesize and protect 2D bismuthene nanoflakes, which can be extended to other 2D materials with a high surface energy.

17.
Nanomaterials (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999299

RESUMO

La2O3 nanoparticles stabilized on carbon nanoflake (CNF) matrix were synthesized and graphitized to produce core-shell structures La2O3/CNFs@C. Further oxidation of these structures by nitric acid vapors for 1, 3 or 6 h was performed, and surface-oxidized particles La2O3/CNFs@C_x (x = 1, 3, 6) were produced. Bulk and surface compositions of La2O3/CNFs@C and La2O3/CNFs@C_x were investigated by thermogravimetric analysis and X-ray photoelectron spectroscopy. With increasing the duration of oxidation, the oxygen and La2O3 content in the La2O3/CNFs@C_x samples increased. The electronic structures of samples were assessed by electron paramagnetic resonance. Two paramagnetic centers were associated with unpaired localized and mobile electrons and were registered in all samples. The correlation between bulk and surface compositions of the samples and their electronic structures was investigated for the first time. The impact of the ratio between sp2- and sp3-hybridized C atoms, the number and nature of oxygen-containing groups on the surface and the presence and proportion of coordinated La atoms on the EPR spectra was demonstrated.

18.
ACS Appl Mater Interfaces ; 15(40): 47661-47668, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783452

RESUMO

Searching for new phase-change materials for memory and neuromorphic device applications and further understanding the phase transformation mechanism are attracting wide attention. Phase transformation from the amorphous phase to the crystal phase has been unraveled in iron telluride (FeTe) bulk film deposited by pulsed laser deposition, recently. However, the van der Waals-layered feature of FeTe in the crystal form was not noted, which will benefit the scaling of the memory devices and shine light on phase-change heterostructures or interfacial phase-change materials. Moreover, the demonstration of advanced memory or neuromorphic device applications is lacking. Here, we investigate the phase transformation of FeTe starting from mechanically exfoliated van der Waals layers from a bulk single crystal. Surficial amorphization is revealed at the surface layers of FeTe flakes after exfoliation under ambient conditions, which could be transformed back to the crystalline phase with laser irradiation or heating. The conductance drop of the flake devices near 400 K verifies the phase transformation electrically. Memristor behavior of the amorphous surface in FeTe has been further demonstrated, proving the reversibility of the phase transformation and shining light on the possible applications of neuromorphic devices.

19.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836792

RESUMO

Fabricating heterostructures with abundant interfaces and delicate nanoarchitectures is an attractive approach for optimizing photocatalysts. Herein, we report the facile synthesis of BiOCl nanoflake/FeOCl nanospindle heterostructures through a solution chemistry method at room temperature. Characterizations, including XRD, SEM, TEM, EDS, and XPS, were employed to investigate the synthesized materials. The results demonstrate that the in situ reaction between the Bi precursors and the surface Cl- of FeOCl enabled the bounded nucleation and growth of BiOCl on the surface of FeOCl nanospindles. Stable interfacial structures were established between BiOCl nanoflakes and FeOCl nanospindles using Cl- as the bridge. Regulating the Bi-to-Fe ratios allowed for the optimization of the BiOCl/FeOCl interface, thereby facilitating the separation of photogenerated carriers and accelerating the photocatalytic degradation of RhB. The BiOCl/FeOCl heterostructures with an optimal composition of 15% BiOCl exhibited ~90 times higher visible-light photocatalytic activity than FeOCl. Based on an analysis of the band structures and reactive oxygen species, we propose an S-scheme mechanism to elucidate the significantly enhanced photocatalytic performance observed in the BiOCl/FeOCl heterostructures.

20.
Adv Mater ; 35(52): e2306810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722006

RESUMO

Titanium selenide (TiSe2 ), a model transition metal chalcogenide material, typically relies on topotactic ion intercalation/deintercalation to achieve stable ion storage with minimal disruption of the transport pathways but has restricted capacity (<130 mAh g-1 ). Developing novel energy storage mechanisms beyond conventional intercalation to break capacity limits in TiSe2 cathodes is essential yet challenging. Herein, the ion storage properties of TiSe2 are revisited and an unusual thermodynamically stable twin topotactic/nontopotactic Cu2+ accommodation mechanism for aqueous batteries is unraveled. In situ synchrotron X-ray diffraction and ex situ microscopy jointly demonstrated that topotactic intercalation sustained the ion transport framework, nontopotactic conversion involved localized multielectron reactions, and these two parallel reactions are miraculously intertwined in nanoscale space. Comprehensive experimental and theoretical results suggested that the twin-reaction mechanism significantly improved the electron transfer ability, and the reserved intercalated TiSe2 structure anchored the reduced titanium monomers with high affinity and promoted efficient charge transfer to synergistically enhance the capacity and reversibility. Consequently, TiSe2 nanoflake cathodes delivered a never-before-achieved capacity of 275.9 mAh g-1 at 0.1 A g-1 , 93.5% capacity retention over 1000 cycles, and endow hybrid batteries (TiSe2 -Cu||Zn) with a stable energy supply of 181.34 Wh kg-1 at 2339.81 W kg-1 , offering a promising model for aqueous ion storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA