Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Toxicol Methods ; : 107563, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357804

RESUMO

Nanoparticles are microscopic particles ranging in size from one to one hundred nanometers. Due to their extensive features, nanoparticles find widespread use in various fields worldwide, including cosmetics, medical diagnosis, pharmaceuticals, food products, drug delivery, electronic devices, artificial implants, and skincare. However, their unique characteristics have led to high demand and large-scale manufacturing, resulting in adverse impacts on the environment and bioaccumulation. Researchers have been exploring issues related to the environmental toxicity resulting from the high production of selected nanoparticles. This review discusses and addresses the adverse impacts of highly produced nanoparticles such as Carbon Nanotubes, Silica, Titanium dioxide, Zinc Oxide, Copper oxide, and Silver nanoparticles on different in vivo, in vitro, alternate invertebrate models, and plant models. Summarizing in vivo research on rats, rabbits, and earthworms, the review reveals that nanoparticles induce cytotoxicity, embryotoxicity, and DNA damage, primarily targeting organs like the brain, liver, kidney, and lungs, leading to nephron, neuro, and hepatotoxicity. Studying the effects on alternative models like zebrafish, Caenorhabditis elegans, Drosophila, sea urchins, and Saccharomyces cerevisiae demonstrates genotoxicity, apoptosis, and cell damage, affecting reproduction, locomotion, and behavior. Additionally, research on various cell lines such as HepG2, BALB/c 3 T3, and NCL-H292 during in vitro studies reveals apoptosis, increased production of reactive oxygen species (ROS), halted cell growth, and reduced cell metabolism. The review highlights the potentially adverse impacts of nanoparticles on the environment and living organisms if not used sustainably and with caution. The widespread use of nanoparticles poses hazards to both the environment and human health, necessitating appropriate actions and measures for their beneficial use. Therefore, this review focuses on widely used nanoparticles like zinc, titanium, copper, silica, carbon nanotubes, and silver, chosen due to their environmental toxicity when excessively used. Environmental toxicity of air, water, and soil is evaluated using environmentally relevant alternative animal models such as Drosophila, zebrafish, earthworms, etc., alongside in vivo and in vitro models, as depicted in the graphical abstract.

2.
R Soc Open Sci ; 11(6): 231839, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100165

RESUMO

Nanoparticle uptake by cells is a key parameter in their performance in biomedical applications. However, the use of quantitative, non-destructive techniques to obtain the amount of nanoparticles internalized by cells is still uncommon. We have studied the cellular uptake and the toxicity of core-shell maghemite-silica magnetic nanoparticles (MNPs), with a core diameter of 9 nm and a shell thickness of 3 nm. The internalization of the nanoparticles by mouse neuroblastoma 2a cells was evaluated by sensitive and non-destructive Superconducting Quantum Interference Device (SQUID) magnetometry and corroborated by graphite furnace atomic absorption spectroscopy. We were thus able to study the toxicity of the nanoparticles for well-quantified MNP uptake in terms of nanoparticle density within the cell. No significant variation in cell viability or growth rate was detected for any tested exposure. Yet, an increase in both the amount of mitochondrial superoxide and in the lysosomal activity was detected for the highest concentration (100 µg ml-1) and incubation time (24 h), suggesting the onset of a disruption in ROS homeostasis, which may lead to an impairment in antioxidant responses. Our results validate SQUID magnetometry as a sensitive technique to quantify MNP uptake and demonstrate the non-toxic nature of these core-shell MNPs under our culture conditions.

3.
ADMET DMPK ; 12(1): 177-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560712

RESUMO

Background and purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles. Experimental approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos. Key results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells. The GT/AgNPs showed high biocompatibility for zebrafish embryos monitored microscopically for their developmental stages and by cumulative hatchability studies. The reduced hatchability found in the AgNPs-treated group was correlated by differential gene expression of zebrafish hatching enzymes (ZHE) (ZHE1 and ZHE2). Conclusion: The results indicated that nanoparticles can affect the hatching of zebrafish embryos and elicit toxicity at the gene level.

4.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612865

RESUMO

In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Indústrias , Tecnologia
5.
J Hazard Mater ; 469: 134084, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518700

RESUMO

Research on airborne ultrafine particles (UFP) is driven by an increasing awareness of their potential effects on human health and on ecosystems. Brake wear is an important UFP source releasing largely metallic and potentially hazardous emissions. UFP uptake into plant tissues could mediate entry into food webs. Still, the effects of these particles on plants have barely been studied, especially in a realistic setting with aerial exposure. In this study, we established a system designed to mimic airborne exposure to ultrafine brake dust particles and performed experiments with the model species Arabidopsis thaliana. Using advanced analytical methods, we characterized the conditions in our exposure experiments. A comparison with data we obtained on UFP release at different outdoor stations showed that our controlled exposures are within the same order of magnitude regarding UFP deposition on plants at a traffic-heavy site. In order to assess the physiological implications of exposure to brake derived-particles we generated transcriptomic data with RNA sequencing. The UFP treatment led to diverse changes in gene expression, including the deregulation of genes involved in Fe and Cu homeostasis. This suggests a major contribution of metallic UFPs to the elicitation of physiological responses by brake wear derived emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poeira , Tamanho da Partícula , Emissões de Veículos/toxicidade , Emissões de Veículos/análise
6.
Heliyon ; 10(3): e25378, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322934

RESUMO

Nanomaterials are known to exhibit unique interactions with light. Iron oxide nanoparticles (IONPs), composed of magnetite (black iron oxide) specifically, are known to be highly absorptive throughout the visible portion of the spectrum. We sought to investigate and overcome optical interference of IONPs in colorimetric, fluorometric and luminescence assays by introducing additional controls and determining the concentration-dependent contribution to optical artifacts which could confound, skew, or invalidate results. We tested the in vitro cytotoxicity of ∼8 nm spherical magnetite nanoparticles capped with alginate on a human lung carcinoma (A549) cell line for different exposure periods and at various concentrations. We observed significant interference with both the MTT reagent and the absorption at 590 nm, a concentration-dependent reduction in the luminescence, fluorescence at ∼490 nm (viability marker), and fluorescence at 530 nm (cytotoxicity marker). After introducing an additional correction, we obtained more accurate results, including a clear decrease in viability at 12-h post-treatment, with apparent near complete recovery after 24-h in addition to a dose-independent, time-dependent alteration in the cell proliferation rate. A small increase in cytotoxicity was noted at the 24-h timepoint at the two highest concentrations. According to our results, the MTT reagents appear to interact substantially with IONPs at concentrations above 0.1 mg/mL, therefore, this assay is not recommended for IONP cytotoxicity assessment at higher concentrations.

7.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334567

RESUMO

Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.

8.
Arch Toxicol ; 98(4): 1061-1080, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340173

RESUMO

We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 105 (BaSO4) and 1.49 × 106 (TiO2) particles/cm3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm2 resulted in mild, reversible damage (~ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.


Assuntos
Nanopartículas , Aerossóis e Gotículas Respiratórios , Humanos , Células A549 , Células Cultivadas , Nanopartículas/toxicidade , Linhagem Celular , Aerossóis
9.
ACS Nano ; 18(3): 2030-2046, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198284

RESUMO

Understanding the spatial orientation of nanoparticles and the corresponding subcellular architecture events favors uncovering fundamental toxic mechanisms and predicting response pathways of organisms toward environmental stressors. Herein, we map the spatial location of label-free citrate-coated Ag nanoparticles (Cit-AgNPs) and the corresponding subcellular reorganization in microalgae by a noninvasive 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). Cryo-SXT near-natively displays the 3D maps of Cit-AgNPs presenting in rarely identified sites, namely, extracellular polymeric substances (EPS) and the cytoplasm. By comparative 3D morphological assay, we observe that Cit-AgNPs disrupt the cellular ultrastructural homeostasis, triggering a severe malformation of cytoplasmic organelles with energy-producing and stress-regulating functions. AgNPs exposure causes evident disruption of the chloroplast membrane, significant attenuation of the pyrenoid matrix and starch sheath, extreme swelling of starch granules and lipid droplets, and shrinkage of the nucleolus. In accompaniment, the number and volume occupancy of starch granules are significantly increased. Meanwhile, the spatial topology of starch granules extends from the chloroplast to the cytoplasm with a dispersed distribution. Linking the dynamics of the internal structure and the alteration of physiological properties, we derive a comprehensive cytotoxic and response pathway of microalgae exposed to AgNPs. This work provides a perspective for assessing the toxicity at subcellular scales to achieve label-free nanoparticle-caused ultrastructure remodeling of phytoplankton.


Assuntos
Nanopartículas Metálicas , Microalgas , Nanopartículas Metálicas/química , Prata/química , Citoplasma/metabolismo , Amido
10.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982206

RESUMO

In recent years, research on silver nanoparticles (AgNPs) has attracted considerable interest among scientists because of, among other things, their alternative application to well-known medical agents with antibacterial properties. The size of the silver nanoparticles ranges from 1 to 100 nm. In this paper, we review the progress of research on AgNPs with respect to the synthesis, applications, and toxicological safety of AgNPs, and the issue of in vivo and in vitro research on silver nanoparticles. AgNPs' synthesis methods include physical, chemical, and biological routes, as well as "green synthesis". The content of this article covers issues related to the disadvantages of physical and chemical methods, which are expensive and can also have toxicity. This review pays special attention to AgNP biosafety concerns, such as potential toxicity to cells, tissues, and organs.


Assuntos
Nanopartículas Metálicas , Prata , Prata/toxicidade , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Antibacterianos/química , Química Verde
11.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202465

RESUMO

Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast Saccharomyces cerevisiae as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.

12.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500804

RESUMO

The fibroblast activation protein (FAP) is heavily expressed in fibroblasts associated with the tumor microenvironment, while the prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of malignant angiogenic processes. Previously, we reported that [177Lu]lutetium sesquioxide-iFAP/iPSMA nanoparticles ([177Lu]Lu-iFAP/iPSMA) inhibit HCT116 tumor progression in mice. Understanding the toxicity of [177Lu]Lu-iFAP/iPSMA in healthy tissues, as well as at the tissue and cellular level in pathological settings, is essential to demonstrate the nanosystem safety for treating patients. It is equally important to demonstrate that [177Lu]Lu-iFAP/iPSMA can be prepared under good manufacturing practices (GMP) with reproducible pharmaceutical-grade quality characteristics. This research aimed to prepare [177Lu]Lu-iFAP/iPSMA under GMP-compliant radiopharmaceutical processes and evaluate its toxicity in cell cultures and murine biological systems under pathological environments. [177Lu]Lu2O3 nanoparticles were formulated as radiocolloidal solutions with FAP and PSMA inhibitor ligands (iFAP and iPSMA), sodium citrate, and gelatin, followed by heating at 121 °C (103-kPa pressure) for 15 min. Three consecutive batches were manufactured. The final product was analyzed according to conventional pharmacopeial methods. The Lu content in the formulations was determined by X-ray fluorescence. [177Lu]Lu-iFAP/iPSMA performance in cancer cells was evaluated in vitro by immunofluorescence. Histopathological toxicity in healthy and tumor tissues was assessed in HCT116 tumor-bearing mice. Immunohistochemical assays were performed to corroborate FAP and PSMA tumor expression. Acute genotoxicity was evaluated using the micronuclei assay. The results showed that the batches manufactured under GMP conditions were reproducible. Radiocolloidal solutions were sterile and free of bacterial endotoxins, with radionuclidic and radiochemical purity greater than 99%. The lutetium content was 0.10 ± 0.02 mg/mL (0.9 GBq/mg). Significant inhibition of cell proliferation in vitro and in tumors was observed due to the accumulation of nanoparticles in the fibroblasts (FAP+) and neovasculature (PSMA+) of the tumor microenvironment. No histopathological damage was detected in healthy tissues. The data obtained in this research provide new evidence on the selective toxicity to malignant tumors and the absence of histological changes in healthy tissues after intravenous injection of [177Lu]Lu-iFAP/iPSMA in mammalian hosts. The easy preparation under GMP conditions and the toxicity features provide the added value needed for [177Lu]Lu-iFAP/iPSMA clinical translation.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36294038

RESUMO

Different types of metal oxide nanoparticles (NPs) are being used for wastewater treatment worldwide but concerns have been raised regarding their potential toxicities, especially toward non-targeted aquatic organisms including fishes. Therefore, the present study aimed to evaluate the toxicity of copper oxide (CuO) NPs (1.5 mg/L; positive control group) in a total of 130 common carp (Cyprinus carpio), as well as the potential ameliorative effects of fenugreek (Trigonella foenum-graecum) seed extracts (100 mg/L as G-1 group, 125 mg/L as G-2 group, and 150 mg/L as G-3 group) administered to fish for 28 days. Significant changes were observed in the morphometric parameters: the body weight and length of the CuO-NP-treated fish respectively decreased from 45.28 ± 0.34 g and 14.40 ± 0.56 cm at day one to 43.75 ± 0.41 g and 13.57 ± 0.67 cm at day 28. Conversely, fish treated with T. foenum-graecum seed extract showed significant improvements in body weight and length. After exposure to CuO NPs, a significant accumulation of Cu was recorded in the gills, livers, and kidneys (1.18 ± 0.006 µg/kg ww, 1.38 ± 0.006 µg/kg ww, and 0.05 ± 0.006 µg/kg ww, respectively) of the exposed common carp, and significant alterations in fish hematological parameters and oxidative stress biomarkers (lipid peroxidation (LPO), glutathione (GSH), and catalase (CAT)) were also observed. However, supplementing diets with fenugreek extracts modulated the blood parameters and the oxidative stress enzymes. Similarly, histological observations revealed that sub-lethal exposure to CuO NPs caused severe histomorphological changes in fish gills (i.e., degenerative epithelium, fused lamellae, necrotic lamellae, necrosis of primary lamellae, complete degeneration, and complete lamellar fusion), liver (i.e., degenerative hepatocytes, vacuolization, damaged central vein, dilated sinusoid, vacuolated degeneration, and complete degeneration), and kidney (i.e., necrosis and tubular degeneration, abnormal glomerulus, swollen tubules, and complete degeneration), while the treatment with the fenugreek extract significantly decreased tissue damage in a dose-dependent manner by lowering the accumulation of Cu in the selected fish tissues. Overall, this work demonstrated the ameliorative effects of dietary supplementation with T. foenum-graecum seed extract against the toxicity of NPs in aquatic organisms. The findings of this study therefore provided evidence of the promising nutraceutical value of fenugreek and enhanced its applicative potential in the sector of fish aquaculture, as it was shown to improve the growth performance and wellness of organisms.


Assuntos
Carpas , Nanopartículas Metálicas , Trigonella , Animais , Cobre/toxicidade , Catalase , Extratos Vegetais/farmacologia , Sementes , Antioxidantes/farmacologia , Glutationa , Nanopartículas Metálicas/toxicidade , Biomarcadores , Óxidos , Dieta , Necrose , Peso Corporal
15.
Ecotoxicology ; 31(6): 1023-1034, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35831721

RESUMO

The increasing production of nano-TiO2 has attracted extensive concerns about the ecological consequence and health risk of these compounds in natural ecosystem. However, little is known about its toxicity on zooplankton, especially its possibility to access to the food chain via dietary exposure. To address this concern, the toxic and cumulative effects of nano-TiO2 on an aquatic food chain were explored through two trophic levels independently or jointly including producer and consumer. The results revealed that exposure to suspensions of nanomaterials had negative effects on both producers and consumers. Specifically, nanoparticles reduced the density of algal cells in a concentration-dependent way, and hatching life expectancy, average lifespan, net reproductive rate, and population intrinsic growth rate of rotifers decreased significantly with the concentration of nanomaterials increased (P < 0.05). Notably, nanoparticles accumulated in algal cells and were transferred to consumers through dietary exposure. Biomagnification of nano-TiO2 was observed in this simplified food chain, as many of the biomagnification factor (BMF) values in this study were >1. Exposure concentration, exposure time and their interactions play a strong part in the accumulation of nanoparticles in algae and rotifers. Overall, the present findings confirmed that nano-TiO2 was deleterious to plankton, posing a significant environmental threat to aquatic ecosystems. Graphical abstract.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Cadeia Alimentar , Nanopartículas/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Toxics ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35202237

RESUMO

Since the rise and rapid development of nanoscale science and technology in the late 1980s, nanomaterials have been widely used in many areas including medicine, electronic products, crafts, textiles, and cosmetics, which have provided a lot of convenience to people's life. However, while nanomaterials have been fully utilized, their negative effects, also known as nano pollution, have become increasingly apparent. The adverse effects of nanomaterials on the environment and organisms are mainly based on the unique size and physicochemical properties of nanoparticles (NPs). NPs, as the basic unit of nanomaterials, generally refer to the ultrafine particles whose spatial scale are defined in the range of 1-100 nm. In this review, we mainly introduce the basic status of the types and applications of NPs, airborne NP pollution, and the relationship between airborne NP pollution and human diseases. There are many sources of airborne NP pollutants, including engineered nanoparticles (ENPs) and non-engineered nanoparticles (NENPs). The NENPs can be further divided into those generated from natural activities and those produced by human activities. A growing number of studies have found that exposure to airborne NP pollutants can cause a variety of illnesses, such as respiratory diseases, cardiovascular diseases, and neurological disorders. To deal with the ever increasing numbers and types of NPs being unleashed to the air, we believe that extensive research is needed to provide a comprehensive understanding of NP pollution hazards and their impact mechanisms. Only in this way can we find the best solution and truly protect the safety and quality of life of human beings.

17.
Environ Technol ; 43(13): 1988-2001, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33308050

RESUMO

Acid mine drainage (AMD) is the major effluent generated from metal and coal mines, causing serious ecological risks and degradation of aquatic habitats and surrounding soil quality. Biochemical passive reactors (BPRs) are an option for improving AMD affected water. This study investigates the effect of the size and concentration of zerovalent iron nanoparticles (nZVI) on the efficiency of batch BPRs during AMD remediation. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were also used as complementary techniques for the investigation of the changes in microbial cells and nZVI properties after the AMD remediation. The results from the batch experiment showed that the concentration of nZVI increases the pH and decreases ORP during AMD treatment, thus favouring the removal of metals. The results also suggest that metal sulfide precipitation occurred in all the batch with reactive mixture but was greater in reactors amended with nZVI of larger size. This study revealed that the presence of nZVI in the BPR leads to metal removal as well as the inhibition of sulfate-reducing bacteria (SRB) activity. Microscopy study indicated that the addition of nZVI creates a morphological change on certain microorganisms in which the cellular membrane was fully covered with nZVI, inducing cell lysis process. These results show that nZVI is a promising reactive material for the treatment of AMD in BPR systems.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Ácidos/química , Ferro/química , Metais , Mineração , Poluentes Químicos da Água/química
18.
Environ Pollut ; 293: 118559, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801625

RESUMO

The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO2 emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO2 emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.


Assuntos
Esterco , Nanopartículas Metálicas/toxicidade , Microbiologia do Solo , Óxido de Zinco , Agricultura , Agroquímicos/toxicidade , Carbono , Ciclo do Carbono , Fertilizantes/análise , Nitrogênio , Ciclo do Nitrogênio , Solo , Spinacia oleracea , Óxido de Zinco/toxicidade
19.
Mater Sci Eng C Mater Biol Appl ; 130: 112441, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702526

RESUMO

Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Humanos
20.
Sci Total Environ ; 779: 146430, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33752002

RESUMO

Elevated CO2 (eCO2) and nanoparticles release are considered among the most noteworthy global concerns as they may impose negative effects on human health and ecosystem functioning. A mechanistic understanding of their combined impacts on soil microbiota is essential due to the profound eCO2 effect on soil biogeochemical processes. In this study, the impacts of Cr2O3 nanoparticles (nano-Cr2O3) on the activity, structure and co-occurrence networks of bacterial communities under ambient and eCO2 were compared between a clay loam and a sandy loam soil. We showed that eCO2 substantially mitigated nano-Cr2O3 toxicity, with microbial biomass, enzyme activity and bacterial alpha-diversity in clay loam soil were much higher than those in sandy loam soil. Nano-Cr2O3 addition caused an increase in alpha-diversity except for clay loam soil samples under eCO2. 16S rRNA gene profiling data found eCO2 remarkably reduced community divergences induced by nano-Cr2O3 more efficiently in clay loam soil (P < 0.05). Network analyses revealed more complex co-occurrence network architectures in clay loam soil than in sandy loam soil, however, nano-Cr2O3 decreased but eCO2 increased modularity and network complexity. Rising CO2 favoured the growth of oligotrophic (Acidobacteriaceae, Bryobacteraceae) rather than the copiotrophic bacteria (Sphingomonadaceae, Caulobacteraceae, Bacteroidaceae), which may contribute to community recovery and increase available carbon utilization efficiency. Our results suggested that the degree to which eCO2 mitigates nano-Cr2O3 toxicity is soil dependent, which could be related to the variation in clay and organic matter content, resilience of the resistant bacterial taxa, and microbial network complexity in distinct soils.


Assuntos
Nanopartículas , Solo , Dióxido de Carbono/análise , Humanos , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA