Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.135
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 853-861, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173517

RESUMO

Electrocatalytic nitrate reduction reaction presents a promising avenue for environmentally friendly ammonia (NH3) synthesis and wastewater treatment. An essential aspect to consider is the meticulous design of electrocatalysts. This study explores the utilization of a Ni-Co alloy nanosheet-decorated three-dimensional titanium dioxide (3D-TiO2) nanobelts electrodeposited on titanium meshes (NixCoy@TiO2/TM) for efficient electrocatalytic NH3 production. The optimized Ni1Co3@TiO2/TM electrode achieves a significant NH3 yield of 676.3 ± 27.1 umol h-1 cm-2 with an impressive Faradaic efficiency (FE) of 95.1 % ± 2.1 % in a 0.1 M KOH solution containing 0.1 M NO3- at -0.4 V versus the reversible hydrogen electrode. Additionally, the electrode demonstrates exceptional electrochemical activity for NH3 synthesis in simulated wastewater, delivering an outstanding NH3 yield of 751.6 ± 44.3 umol h-1 cm-2 with a FE of 96.8 % ± 0.4 % at the same potential of -0.4 V. Moreover, the electrode exhibits minimal variation in current density, NH3 yields and FEs throughout the 24-h stability test and the 20-cycle test, demonstrating its excellent stability and durability. This study offers a straightforward electrodeposited approach for the development of 3D-nanostructured alloys as catalysts for NH3 electrosynthesis from nitrates at room temperature.

2.
Chemistry ; : e202402852, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136936

RESUMO

High-level pseudocapacitive materials require incorporations of significant redox regions into conductive and penetrable skeletons to enable the creation of devices capable of delivering high power for extended periods. Coordination nanosheets (CNs) are appealing materials for their high natural electrical conductivities, huge explicit surface regions, and semi-one-layered adjusted pore clusters. Thus, rational design of ligands and topological networks with desired electronic structure is required for the advancement in this field. Herein, we report three novel conjugated CNs (RV-10-M, M = Zn, Ni, and Co), by utilizing the full conjugation of the terpyridine-attached flexible tetraphenylethylene (TPE) units as the molecular rotors at the center. We prepare binder-free transparent nanosheets supported on Ni-foam with outstanding pseudocapacitive properties via a hydrothermal route followed by facile exfoliation. Among three CNs, the high surface area of RV-10-Co facilitates fast transport of ions and electrons and could achieve a high specific capacity of 670.8 C/g (1677 F/g) at 1 A/g current density. Besides, the corresponding flexible RV-10-Co possesses a maximum energy density of 37.26 Wh kg-1 at a power density of 171 W kg-1 and 70% capacitance retention even after 1000 cycles.

3.
Chempluschem ; : e202400449, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109458

RESUMO

A magnetically responsive photonic crystal of colloidal nanosheets can exhibit a controllable structural color, offering diverse potential applications. In this study, we systematically investigated how the lateral sizes of graphene oxide (GO) nanosheets affect their magnetic responsiveness in a photonic system. Contrary to the prediction that larger lateral sizes of nanosheets would be more responsive to an applied magnetic field based on the magnetic energy of anisotropic materials, we discovered that GO nanosheets with larger lateral sizes in the photonic system scarcely responded to a 12 T magnetic field. The lack of magnetic response may be due to the strongly restricted rotational motion of GO nanosheets by mutual electrostatic forces. In contrast, GO nanosheets with medium lateral sizes readily responded to the 12 T magnetic field, forming a uniaxially oriented structure that resulted in a vivid structural color. However, smaller GO nanosheets displayed a less vivid structural color, possibly because of less structural ordering of GO nanosheets. Finally, we found that the photonic crystal of GO nanosheets with optimized lateral sizes responded effectively to the 12 T magnetic field across various GO concentrations, resulting in a vivid and tunable structural color.

4.
Small ; : e2405013, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109579

RESUMO

2D carbon nitride nanosheets, exemplified by g-C3N4, offers significant structural benefits and enhanced photocatalytic activity. Nonetheless, the quantum confinement effect prevalent in nanoscale photocatalysts would result in an enlarged bandgap, potentially restricting the spectral absorption range and impeding improvements in photocatalytic efficiency. Here, a high-performance 2D photocatalyst with an extended spectral response is achieved by incorporating a novel phenol-like structure into the conjugated framework of ultrathin g-C3N4 nanosheet. This novel strategy features targeted pyrimidine doping to create a conjugated carbon zone in heptazine structure, offering a thermodynamically favorable pathway for hydroxyl functionalization during the annealing exfoliation process. Consequently, the π-π* transition energy in the material is significantly decreased, and the active lone pair electrons in phenol-like structure induces a new n-π* transition with notably enhanced absorption from 500 to 650 nm. The optimized material shows a dramatic enhancement in photocatalytic activity, achieving ≈72 times than the activity of bulk g-C3N4, and demonstrating a measurable H2 production rate of 6.57 µmol g-1 h-1 under 650 nm light. This study represents a significant step forward in the strategic design of 2D photocatalysts, with tailored electronic structures that significantly boost light absorption and photocatalytic efficiency.

5.
Adv Mater ; : e2407931, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129342

RESUMO

The low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high-quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold-hydrogel nanocomposites exhibit a conductivity of ≈520 S cm-1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm-1 when the density of the dry gold network is controlled. A gold-adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer-based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.

6.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124017

RESUMO

Pure SnO2 and 1 at.% PdO-SnO2 materials were prepared using a simple hydrothermal method. The micromorphology and element valence state of the material were characterized using XRD, SEM, TEM, and XPS methods. The SEM results showed that the prepared material had a two-dimensional nanosheet morphology, and the formation of PdO and SnO2 heterostructures was validated through TEM. Due to the influence of the heterojunction, in the XPS test, the energy spectrum peaks of Sn and O in PdO-SnO2 were shifted by 0.2 eV compared with SnO2. The PdO-SnO2 sensor showed improved ethanol sensing performance compared to the pure SnO2 sensor, since it benefited from the large specific surface area of the nanosheet structure, the modulation effect of the PdO-SnO2 heterojunction on resistance, and the catalyst effect of PdO on the adsorption of oxygen. A DFT calculation study of the ethanol adsorption characteristics of the PdO-SnO2 surface was conducted to provide a detailed explanation of the gas-sensing mechanism. PdO was found to improve the reducibility of ethanol, enhance the adsorption of ethanol's methyl group, and increase the number of adsorption sites. A synergistic effect based on the continuous adsorption sites was also deduced.

7.
J Mol Graph Model ; 132: 108841, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39098149

RESUMO

Aluminum nanosheets are a form of Al nanoparticle that have been recently manufactured on an industrial scale and have a variety of uses. Al nanoparticles are extensively used in a variety of sectors, including aerospace, construction, medical, chemistry, and marine industries. Crack propagation in various constructions must be investigated thoroughly for structural design purposes. Cracks in nanoparticles may occur during the production of nanosheets (NSs) or when different mechanical or thermal pressures were applied. In this work, the effect of a continuous electric field on the fracture formation process of aluminum nanosheets was investigated. For this study, molecular dynamics simulation and LAMMPS software were used. The effects of various electric fields on several parameters, including as stress, velocity (Velo), and fracture length, were explored, and numerical data were retrieved using software. The results show that the amplitude of the electric field parameter affected the atomic development of modeled Al nanosheets throughout the fracture operation. This effect resulted in atomic resonance (amplitude) fluctuations, which affected the mean interatomic forces and led the temporal evolution of atoms to converge to certain specified initial conditions. The crack length in our modeled samples ranged from 22.88 to 32.63 Å, depending on the electric field parameter (0.1-1 V/Å). Finally, it was determined that the crack growth of modeled Al nanosheets may be controlled using CEF parameters in real-world situations.

8.
Sci Bull (Beijing) ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39127565

RESUMO

Selective CO2-to-CO photoreduction is under intensive research and requires photocatalysts with tuned microstructures to accelerate the reaction kinetics. Here, we report CuInS2 nanosheet arrays with sulfur vacancies (VS) grown on the two-dimensional (2D) support of Ti3C2Tx MXene for CO2-to-CO photoreduction. Our results reveal that the use of Ti3C2Tx induces strong support effect, which causes the hierarchical nanosheet arrays growth of CuInS2 and simultaneously leads to charge transfer from CuInS2 to Ti3C2Tx support, resulting in VS formed in CuInS2. The strong support effect based on Ti3C2Tx is proven to be applicable to prepare a series of different metal indium sulfide arrays with VS. CuInS2 nanosheet arrays with VS supported on Ti3C2Tx benefit the photocatalytic selective reduction of CO2 to CO, manifesting a remarkable over 14.8-fold activity enhancement compared with pure CuInS2. The experimental and computational investigations pinpoint that VS of CuInS2 resulting from the support effect of Ti3C2Tx lowers the barrier of the rate-limiting step of *COOH → *OH + *CO, which is the key to the photoactivity enhancement. This work demonstrates MXene support effects and offers an effective approach to regulate the atomic microstructure of metal sulfides toward enhancing photocatalytic performance.

9.
ACS Appl Bio Mater ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141835

RESUMO

Dilated cardiomyopathy (DCM), known as myocardial metabolic dysfunction, is recognized as a clinical condition characterized by left ventricular dilation or improper contraction of cardiac muscles in the absence of coronary atherosclerosis and hypertension. It is an independent risk factor for cardiac function caused by a hyperglycemic condition in diabetic patients leading to heart failure (HF), which renders the early diagnosis of DCM highly challenging. Hence, detection of early diagnostic biomarkers in blood serum to identify DCM conditions is quite requisite. Brain natriuretic peptide (BNP) is a well-recognized biomarker for heart failure and reported as an early diagnostic biomarker for DCM. In this work, we developed a terbium citrate based MoS2 nanosheet (NS) coupled immunoprobe for the sensitive detection of BNP. The antibody conjugated Tb-citrate complex exhibits green fluorescence, which is quenched by the introduction of MoS2 NS. On subsequent addition of antigen BNP, the fluorescence is enhanced because of specific antigen-antibody interaction. The probe is selective and sensitive toward BNP in a linear range from 30.76 to 849.85 pg/mL with a low LOD of 3.87 pg/mL. The probe is validated in spiked human serum samples with good recovery percentage.

10.
J Colloid Interface Sci ; 677(Pt B): 161-170, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39142157

RESUMO

Two-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using Cu2O nanotubes for metal ions and H2BDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite. The collaboration between Cu-BDC MOF and rGO boosts both the catalytic reduction of 4-nitrophenol and the electrochemical capabilities. The conversion of 4-nitrophenol to 4-aminophenol is achieved using sodium borohydride as both a reducing agent and a catalyst. The study explores the impact of different concentrations of 4-nitrophenol and sodium borohydride on catalytic efficiency. The increase in sodium borohydride concentration enhances catalytic efficiency by providing more BH4- ions and electrons for the reduction process. The catalytic reduction process adheres to the Langmuir-Hinshelwood mechanism with apparent pseudo-first-order kinetics. Specifically, Cu-BDC MOF and rGO/Cu-BDC MOF exhibit specific capacities of 468.4 mA h/g and 656.4 mA h/g at a current density of 2 A/g, respectively, while also enhancing the operating voltage window. Therefore, electrodes based on rGO/Cu-BDC MOF nanosheets present a novel approach for environmental remediation and energy storage applications across various fields.

11.
Macromol Rapid Commun ; : e2400549, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137300

RESUMO

Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.

12.
Nano Lett ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166738

RESUMO

Early stage hepatocellular carcinoma (HCC) presents a formidable challenge in clinical settings due to its asymptomatic progression and the limitations of current imaging techniques in detecting micro-HCC lesions. Addressing this critical issue, we introduce a novel ultrathin gadolinium-oxide (Gd-oxide) nanosheet-based platform with heightened sensitivity for high-field MRI and as a therapeutic agent for HCC. Synthesized via a digestive ripening process, these Gd-oxide nanosheets exhibit an exceptional acid-responsive profile. The integration of the ultrathin Gd-oxide with an acid-responsive polymer creates an ultrasensitive high-field MRI probe, enabling the visualization of submillimeter-sized tumors with superior sensitivity. Our research underscores the ultrasensitive probe's efficacy in the treatment of orthotopic HCC. Notably, the ultrasensitive probe functions dually as a companion diagnostic tool, facilitating simultaneous imaging and therapy with real-time treatment monitoring capabilities. In conclusion, this study showcases an innovative companion diagnostic tool that holds promise for the early detection and effective treatment of micro-HCC.

13.
Nanotechnology ; 35(45)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39137791

RESUMO

Herein, we fabricated nanoscale 2D CeO2sheet structure to develop a stable resistive gas sensor for detection of low concentration (ppm) level formaldehyde vapors. The fabricated CeO2nanosheets (NSs) showed an optical band gap of 3.53 eV and cubic fluorite crystal structure with enriched defect states. The formation of 2D NSs with well crystalline phases is clearly observed from high-resolution transmission electron microscope (HRTEM) images. The NSs have been shown tremendous blue-green emission related to large oxygen defects. A VOC sensing device based on fabricated two-dimensional NSs has been developed for the sensing of different VOCs. The device showed better sensing for formaldehyde compared with other VOCs (2-propanol, methanol, ethanol, and toluene). The response was found to be 4.35, with the response and recovery time of 71 s and 310 s, respectively. The device showed an increment of the recovery time (71 s to 100 s) with the decrement of the formaldehyde ppm (100 ppm to 20 ppm). Theoretical fittings provided the detection limit of formaldehyde ≈8.86 ± 0.45 ppm with sensitivity of 0.56 ± 0.05 ppm-1. The sensor device showed good reproducibility with excellent stability over the study period of 135 d, with a deviation of 1.8% for 100 ppm formaldehyde. The average size of the NSs (≈24 nm) calculated from HRTEM observation showed lower value than the calculated Debye length (≈44 nm) of the charge accumulation during VOCs sensing. Different defect states, interstitial and surface states in the CeO2NSs as observed from the Raman spectrum and emission spectrum are responsible for the formaldehyde sensing. This work offers an insight into 2D semiconductor-based oxide material for highly sensitive and stable formaldehyde sensors.

14.
ACS Nano ; 18(34): 23277-23288, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39143839

RESUMO

The anodeless battery design has recently gained significant interest by eliminating the direct use of a thick lithium (Li) foil. However, it suffers from inhomogeneous Li+ flux, resulting in dendrite growth and a short cycling life. To address this, the exfoliation of layered-structure titanium oxide to 2D nanosheets (2DTiOx) is proposed to precisely control Li+ flux at the atomic scale by maximizing Li+ affinitive Ti sites. Compared to cells without these nanosheets, the Li|2DTiOx|Cu half-cell demonstrates stable cyclability over 900 cycles, with a Coulombic efficiency (CE) over 99% at 0.5 mA cm-2 and 0.5 mAh cm-2. Similarly, a long stable cycling life over 1500 h at 1.0-3.0 mA cm-2 is observed for a 2DTiOx-based symmetric cell containing a limited Li amount from electrodeposited Li metal (e-Li|2DTiOx|e-Li). The full cells (e-Li|2DTiOx||NCM811 and e-Li|2DTiOx||LFP) coupled with NCM811 and LFP cathodes showed a long cycle life of 400 cycles at 1.0 C and 0.5 C, respectively. The exceptional battery performance is attributed to the uniform Li disposition on the 2DTiOx electrode, emphasizing the crucial role of the exposed basal plane in 2DTiOx as an efficient atomic scale Li+ flux regulator. This strategy is expected to advance next-generation lithium metal batteries (LMBs) by highlighting the significance of Li+ affinity at the Ti sites of 2DTiOx nanosheets.

15.
Food Chem ; 461: 140940, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39182335

RESUMO

The accumulation of small doses of hydrogen peroxide (H2O2) into food can cause many diseases in the human body, and it is urgent to develop efficient detection methods of H2O2. Herein, the hierarchical structure composite of NiCo-LDH nanosheets crosslinked NiMoO4 nanorods was grown in situ on carbon cloth (NiMoO4 NRs@NiCo-LDH NSs/CC) by micro-plasma assisted hydrothermal method. Thanks to the synergistic effect of three metals and (NiMoO4 NRs@NiCo-LDH NSs/CC) provided by nanorods/nanosheets hierarchical structure, NiMoO4 NRs@NiCo-LDH NSs/CC exposes more active sites and achieves rapid electron transfer. The H2O2 electrochemical sensor was constructed as the working electrode with a linear range of 1 µmol L-1 to 9.0 mmol L-1 and detection limit of 112 nmol L-1. In addition, the sensor has been successfully applied to the detection of H2O2 in food samples, the recovery rate is 95.2%-106.62%, RSD < 4.89%.

16.
Environ Pollut ; 360: 124678, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111528

RESUMO

Nanomaterial-cellular membrane interaction is crucial for the cytotoxicity of such materials in theoretical investigations. However, previous research often used cellular membrane models with one or few lipid types, which deviates significantly from realistic membrane compositions. Here, employing molecular dynamics (MD) simulations, we investigate the impact of a typical nanomaterial, boron nitride (BN), on a cellular membrane model based on the realistic small intestinal epithelial cell (SIEC) membrane. This membrane contains a complex composition, including abundant glycolipids. Our MD simulations reveal that BN nanosheet can partially insert into the SIEC membrane, maintaining a stable binding conformation without causing obvious structural changes. Dynamic analyses suggest that van der Waals (vdW) interactions drive the binding process between BN and the SIEC membrane. Further simulation of the interaction between BN nanosheet and deglycosylated SIEC membrane confirms that BN nanosheet cause significant structural damage to deglycosylated SIEC membranes, completely inserting into the membrane, extracting lipids, and burying some lipid hydrophilic heads within the membrane interior. Quantitative analyses of mean squared displacements (MSD) of membranes, membrane thicknesses, area per lipid, and order parameters indicate that BN nanosheet causes more substantial damage to deglycosylated SIEC membrane than to intact SIEC membrane. This comparison suggests the molecular mechanism involved in mitigating BN invasion by SIEC membrane that the polysaccharide heads of glycolipids in the SIEC membrane form a significant steric hindrance on membrane surface, not only hindering the insertion of BN, but also resisting the lipid extraction by BN. Free energy calculations further support this conclusion. Overall, our MD simulations not only shed new light into the reduced impact of BN nanosheet on the realistic SIEC membrane but also highlight the importance of glycolipids in protecting cell membranes from nanomaterial invasion, contributing to a deeper understanding of nanomaterial-realistic cell membrane interactions.

17.
Chemistry ; : e202402444, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150684

RESUMO

Ultrathin two-dimensional (2D) metal-organic nanosheets (MONs) have attracted continued attention in the field of advanced functional materials. Their nanoscale thickness, high surface-to-volume ratio, and abundant accessible active sites, are superior advantages compared with their 3D bulk counterparts. Bioinspired molecular scalpel strategy is a promising method for the creation of 2D MONs, and may solve the current shortcomings of MONs synthesis. This review aims to provide a state-of-the-art overview of molecular scalpel strategies and share the results of current development to provide a better solution for MONs synthesis. Different types of molecular scalpel strategies have been systematically summarized. Both mechanisms, advantages and limitations of multiform molecular scalpel strategies have been discussed. Besides, the challenges to be overcome and the question to be solved are also introduced.

18.
Food Chem ; 459: 140445, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024887

RESUMO

The misuse of antibiotics has caused serious impacts on food safety and human health, making it crucial to develop rapidly and highly sensitive methods for detecting trace nitrofuran antibiotics (NFs). In this study, phosphorus, nitride-doped carbon nanosheets (PN/CNs) were synthesized using a simple hydrothermal method based on graphitic carbon nitride. This prepared material showed excellent water solubility and stable optical properties. A new fluorescence sensing platform based on PN/CNs was constructed for the highly sensitive detection of four NFs. This sensitivity was mainly attributed to the fluorescence resonance energy transfer (FRET) mechanism. The limits of detection for nitrofurazone, nitrofurantoin, furazolidone and furaltadone were determined to be 13.41, 15.24, 16.37 and 19.94 nM, respectively. The high sensitivity and selectivity of PN/CNs for these four NFs were thoroughly evaluated by the Stern-Volmer equation and FRET quenching efficiency. This proposed method exhibited high sensitivity and can be successfully applied to detect NFs in fish.


Assuntos
Antibacterianos , Peixes , Transferência Ressonante de Energia de Fluorescência , Contaminação de Alimentos , Nanoestruturas , Nitrofuranos , Nitrofuranos/análise , Antibacterianos/análise , Antibacterianos/química , Animais , Nanoestruturas/química , Contaminação de Alimentos/análise , Carbono/química , Limite de Detecção , Fluorescência , Fósforo/química , Fósforo/análise , Alimentos Marinhos/análise
19.
ACS Appl Mater Interfaces ; 16(33): 43892-43906, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39046193

RESUMO

With the swift evolution of multidrug-resistant bacteria resulting from the intense and inappropriate use of antibiotics, there is a pressing need for innovative solutions. In this study, a thermosensitive hydrogel was developed for efficient bacterial inhibition and promotion of wound healing. The antibacterial chitosan (CS) thermosensitive hydrogel, cross-linked with two-dimensional photothermal nanomaterial black phosphorus (BP) nanosheets through electrostatic interactions, effectively encapsulates and sustains the release of angiogenic drug deferoxamine mesylate (DFO). This facilitates the acceleration of re-epithelialization and neovascularization by enhancing cell migration and proliferation. Following near-infrared (NIR) treatment, this hydrogel demonstrates rapid eradication of the most common multidrug-resistant bacteria encountered in clinical settings, achieved through physical disruption of bacterial membranes and photothermal therapies. Noteworthy is the significant upregulation of IL-19 expression via STAT3 signaling pathways by the BP/CS-DFO hydrogel in a full-thickness wound model. This results in the polarization of the anti-inflammatory M2 macrophage phenotype, altering the microenvironment to a pro-healing state and enhancing extracellular matrix deposition and blood vessel formation. In conclusion, the BP/CS-DFO hydrogel shows immense promise as a potential clinical candidate for wound healing and antimicrobial therapy. Its innovative design and multifunctional capabilities position it as a valuable asset in combating antibiotic resistance and enhancing efficiency in wound healing.


Assuntos
Antibacterianos , Quitosana , Desferroxamina , Hidrogéis , Fósforo , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Fósforo/química , Camundongos , Animais , Quitosana/química , Quitosana/farmacologia , Desferroxamina/química , Desferroxamina/farmacologia , Nanoestruturas/química , Células RAW 264.7 , Testes de Sensibilidade Microbiana , Humanos , Staphylococcus aureus/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
20.
Talanta ; 278: 126496, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996563

RESUMO

Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Nanocompostos , Nanofios , Platina , Dopamina/análise , Dopamina/sangue , Dopamina/química , Platina/química , Células PC12 , Nanofios/química , Nanocompostos/química , Animais , Carbono/química , Ratos , Porosidade , Técnicas Eletroquímicas/métodos , Neurônios/metabolismo , Limite de Detecção , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA