RESUMO
Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.
RESUMO
Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics.
RESUMO
Cervical cancer is among the most frequently occurring neoplasms worldwide, and it particularly affects individuals in developing countries. Factors such as the low quality of screening tests, the high incidence of locally advanced cancer stages and the intrinsic resistance of certain tumors are the main causes of failure in the treatment of this neoplasm. Due to advances in the understanding of carcinogenic mechanisms and bioengineering research, advanced biological nanomaterials have been manufactured. The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including IGF receptor 1. These receptors are activated by binding to their respective growth factor ligands, IGF-1 and IGF-2, and insulin, and play an important role in the development, maintenance, progression, survival and treatment resistance of cervical cancer. In the present review, the role of the IGF system in cervical cancer and three nanotechnological applications that use elements of this system are described, namely Trap decoys, magnetic iron oxide nanoparticles and protein nanotubes. Their use in the treatment of resistant cervical cancer tumors is also discussed.
RESUMO
Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. It is a long-lasting autoimmune disease, which mainly affects the joints causing inflammation and swelling of the synovial joint. RA has a significant impact on the ability to perform daily activities including simple work and household chores. Nonetheless, due to the long periods of pain and the continuous use of anti-inflammatory drugs, RA can debilitate the quality of life and increases mortality. Current therapeutic approaches to treat RA aim to achieve prolonged activity and early and persistent remission of the disease, with the gradual adoption of different drugs available. In this study, we developed a novel hydroxychloroquine and methotrexate co-loaded Pluronic® F-127 nanomicelle and evaluated its therapeutic effects against RA. Our results showed that drug-loaded nanomicelles were capable of modulating the inflammatory process of RA and reducing osteoclastogenesis, edema, and cell migration to the joint. Overall, compared to the free drugs, the drug-loaded nanomicelles showed a 2-fold higher therapeutic effect.
Assuntos
Artrite Reumatoide , Metotrexato , Artrite Reumatoide/tratamento farmacológico , Humanos , Hidroxicloroquina/farmacologia , Articulações , Metotrexato/farmacologia , Qualidade de VidaRESUMO
Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanoformulations and their physical and chemical characteristics; the therapeutic anti-angiogenic process; and methods for assessing the effects on antiangiogenic markers caused by therapies. The articles included in the review were heterogeneous and varied in practically all aspects related to nanoformulations and models. However, there was slight variance in the antiangiogenic effect analysis. CD31 was extensively used as a marker, which does not provide a view of the effects on the most diverse aspects involved in angiogenesis. Therefore, the present review highlighted the need for standardization between the different approaches of antiangiogenic therapy for the GBM model that allows a more effective meta-analysis and that helps in future translational studies.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/química , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Humanos , Nanopartículas/administração & dosagem , Neovascularização Patológica/patologiaRESUMO
Purpose: In the present study, we investigated the effects of 17ß-estradiol (E2) on membrane roughness and gold nanoparticle (AuNP) uptake in MCF-7 breast cancer cells. Methods: Estrogen receptor (ER)-positive breast cancer cells (MCF-7) were exposed to bare 20 nm AuNPs in the presence and absence of 1×10-9 M E2 for different time intervals for up to 24 hrs. The effects of AuNP incorporation and E2 incubation on the MCF-7 cell surface roughness were measured using atomic force microscopy (AFM). Endocytic vesicle formation was studied using confocal laser scanning microscopy (CLSM). Finally, the results were confirmed by hyperspectral optical microscopy. Results: High-resolution AFM images of the surfaces of MCF-7 membranes (up to 250 nm2) were obtained. The incubation of cells for 12 hrs with AuNP and E2 increased the cell membrane roughness by 95% and 30% compared with the groups treated with vehicle (ethanol) or AuNPs only, respectively. This effect was blocked by an ER antagonist (7α,17ß-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol [ICI] 182,780). Higher amounts of AuNPs were localized inside MCF-7 cells around the nucleus, even after 6 hrs of E2 incubation, compared with vehicle-treated cells. Endolysosome formation was induced by E2, which may be associated with an increase in AuNP-uptake. Conclusions: E2 enhances AuNP incorporation in MCF-7 cells by modulating of plasma membrane roughness and inducing lysosomal endocytosis. These findings provide new insights into combined nanotherapies and hormone therapies for breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Ouro/metabolismo , Nanopartículas Metálicas/química , Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Feminino , Humanos , Células MCF-7 , Microscopia de Força Atômica , Modelos Biológicos , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismoRESUMO
According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.
RESUMO
A Osteoartrite (OA) é uma denominação clínica para uma combinação de condições patológicas que envolvem a degeneração progressiva da cartilagem articular e remodelação de osso subcondral. A curcumina, um potente agente anti-inflamatório, têm sido extensivamente estudada, no entanto não oferece boa biodisponibilidade sistêmica. Nanopartículas de ouro (AuNPs) apresentam aplicações potenciais na administração de substâncias terapêuticas aumentando a eficiência do transporte de fármacos. O objetivo deste estudo foi realizar a síntese e caracterização de um sistema conjugando as AuNPs à curcumina e avaliar seu potencial terapêutico em um modelo experimental de OA em camundongos por desestabilização do menisco medial (DMM). As AuNPs foram conjugadas com curcumina e os sistemas foram caracterizados por espectroscopia no UV-VIS, espalhamento de luz dinâmico (DLS) e determinação do potencial zeta. Formou-se 4 grupos de oito animais cada, denominados A, B, C, D que receberam injeção intra-articular de AuNPs, curcumina, AuNP-curcumina e solução fisiológica, respectivamente. Após 7 semanas, a cartilagem da articulação-femoro- tibio-patelar (AFTP) foi avaliada em uma variação de escore de 0 a 24. A conjugação de AuNP-curcumina mostrou boa estabilidade e aplicação terapêutica, mas não diferiu significativamente (P>0,05) dos grupos A e B, no entanto, mostrou menor valor de escore e significância (P<0,001) em relação ao grupo controle. Os resultados deste trabalho mostram a importância do desenvolvimento de novos nanofármacos. Neste caso a conjugação de AuNPs com a curcumina permitiu a obtenção de um nanofármaco com sugestivo potencial para aplicação no tratamento da OA.
Osteoarthritis (OA) is the clinical term for a combination of pathological conditions that involve the progressive degeneration of articular cartilage and subchondral bone remodelling. Curcumin, a potent anti-inflammatory agent, has been extensively studied; however, it does not provide good systemic bioavailability. Gold nanoparticles (AuNPs) have potential applications in the administration of therapeutic substances in order to increase the transport efficiency of drugs. The objectives of this study were to explore the synthesis and characterization of a system combining AuNPs with curcumin and evaluate its therapeutic potential in an experimental model of OA in mice by the destabilization of the medial meniscus (DMM). The AuNPs were conjugated with curcumin and the systems were characterized by UV-VIS spectroscopy, dynamic light scattering (DLS), and zeta potential. Four groups of eight animals each were formed and labelled A, B, C, and D, which received intra-articular injections of AuNPs, curcumin, AuNP-curcumin, and physiologic solution, respectively. After seven weeks, the cartilage of the stifle joint (SJ) was rated on a scale ranging from 0 to 24. Combination of AuNP-curcumin demonstrated good stability and therapeutic applications, but it did not differ significantly (P>0.05) from groups A and B. However, the control group had a significantly lower score (P<0.001). Results of this study demonstrated the importance of developing new nanodrugs. In this case, the combination of AuNPs and curcumin yielded the nanodrug effects suggestive of a potential for application in the treatment of OA.
Assuntos
Animais , Camundongos , Curcumina/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Osteoartrite/veterinária , Ouro/uso terapêuticoRESUMO
A Osteoartrite (OA) é uma denominação clínica para uma combinação de condições patológicas que envolvem a degeneração progressiva da cartilagem articular e remodelação de osso subcondral. A curcumina, um potente agente anti-inflamatório, têm sido extensivamente estudada, no entanto não oferece boa biodisponibilidade sistêmica. Nanopartículas de ouro (AuNPs) apresentam aplicações potenciais na administração de substâncias terapêuticas aumentando a eficiência do transporte de fármacos. O objetivo deste estudo foi realizar a síntese e caracterização de um sistema conjugando as AuNPs à curcumina e avaliar seu potencial terapêutico em um modelo experimental de OA em camundongos por desestabilização do menisco medial (DMM). As AuNPs foram conjugadas com curcumina e os sistemas foram caracterizados por espectroscopia no UV-VIS, espalhamento de luz dinâmico (DLS) e determinação do potencial zeta. Formou-se 4 grupos de oito animais cada, denominados A, B, C, D que receberam injeção intra-articular de AuNPs, curcumina, AuNP-curcumina e solução fisiológica, respectivamente. Após 7 semanas, a cartilagem da articulação-femoro- tibio-patelar (AFTP) foi avaliada em uma variação de escore de 0 a 24. A conjugação de AuNP-curcumina mostrou boa estabilidade e aplicação terapêutica, mas não diferiu significativamente (P>0,05) dos grupos A e B, no entanto, mostrou menor valor de escore e significância (P<0,001) em relação ao grupo controle. Os resultados deste trabalho mostram a importância do desenvolvimento de novos nanofármacos. Neste caso a conjugação de AuNPs com a curcumina permitiu a obtenção de um nanofármaco com sugestivo potencial para aplicação no tratamento da OA.(AU)
Osteoarthritis (OA) is the clinical term for a combination of pathological conditions that involve the progressive degeneration of articular cartilage and subchondral bone remodelling. Curcumin, a potent anti-inflammatory agent, has been extensively studied; however, it does not provide good systemic bioavailability. Gold nanoparticles (AuNPs) have potential applications in the administration of therapeutic substances in order to increase the transport efficiency of drugs. The objectives of this study were to explore the synthesis and characterization of a system combining AuNPs with curcumin and evaluate its therapeutic potential in an experimental model of OA in mice by the destabilization of the medial meniscus (DMM). The AuNPs were conjugated with curcumin and the systems were characterized by UV-VIS spectroscopy, dynamic light scattering (DLS), and zeta potential. Four groups of eight animals each were formed and labelled A, B, C, and D, which received intra-articular injections of AuNPs, curcumin, AuNP-curcumin, and physiologic solution, respectively. After seven weeks, the cartilage of the stifle joint (SJ) was rated on a scale ranging from 0 to 24. Combination of AuNP-curcumin demonstrated good stability and therapeutic applications, but it did not differ significantly (P>0.05) from groups A and B. However, the control group had a significantly lower score (P<0.001). Results of this study demonstrated the importance of developing new nanodrugs. In this case, the combination of AuNPs and curcumin yielded the nanodrug effects suggestive of a potential for application in the treatment of OA.(AU)
Assuntos
Animais , Camundongos , /terapia , Osteoartrite/veterinária , Curcumina/uso terapêutico , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêuticoRESUMO
RESUMO: A Osteoartrite (OA) é uma denominação clínica para uma combinação de condições patológicas que envolvem a degeneração progressiva da cartilagem articular e remodelação de osso subcondral. A curcumina, um potente agente anti-inflamatório, têm sido extensivamente estudada, no entanto não oferece boa biodisponibilidade sistêmica. Nanopartículas de ouro (AuNPs) apresentam aplicações potenciais na administração de substâncias terapêuticas aumentando a eficiência do transporte de fármacos. O objetivo deste estudo foi realizar a síntese e caracterização de um sistema conjugando as AuNPs à curcumina e avaliar seu potencial terapêutico em um modelo experimental de OA em camundongos por desestabilização do menisco medial (DMM). As AuNPs foram conjugadas com curcumina e os sistemas foram caracterizados por espectroscopia no UV-VIS, espalhamento de luz dinâmico (DLS) e determinação do potencial zeta. Formou-se 4 grupos de oito animais cada, denominados A, B, C, D que receberam injeção intra-articular de AuNPs, curcumina, AuNP-curcumina e solução fisiológica, respectivamente. Após 7 semanas, a cartilagem da articulação-femoro- tibio-patelar (AFTP) foi avaliada em uma variação de escore de 0 a 24. A conjugação de AuNP-curcumina mostrou boa estabilidade e aplicação terapêutica, mas não diferiu significativamente (P>0,05) dos grupos A e B, no entanto, mostrou menor valor de escore e significância (P<0,001) em relação ao grupo controle. Os resultados deste trabalho mostram a importância do desenvolvimento de novos nanofármacos. Neste caso a conjugação de AuNPs com a curcumina permitiu a obtenção de um nanofármaco com sugestivo potencial para aplicação no tratamento da OA.
ABSTRACT: Osteoarthritis (OA) is the clinical term for a combination of pathological conditions that involve the progressive degeneration of articular cartilage and subchondral bone remodelling. Curcumin, a potent anti-inflammatory agent, has been extensively studied; however, it does not provide good systemic bioavailability. Gold nanoparticles (AuNPs) have potential applications in the administration of therapeutic substances in order to increase the transport efficiency of drugs. The objectives of this study were to explore the synthesis and characterization of a system combining AuNPs with curcumin and evaluate its therapeutic potential in an experimental model of OA in mice by the destabilization of the medial meniscus (DMM). The AuNPs were conjugated with curcumin and the systems were characterized by UV-VIS spectroscopy, dynamic light scattering (DLS), and zeta potential. Four groups of eight animals each were formed and labelled A, B, C, and D, which received intra-articular injections of AuNPs, curcumin, AuNP-curcumin, and physiologic solution, respectively. After seven weeks, the cartilage of the stifle joint (SJ) was rated on a scale ranging from 0 to 24. Combination of AuNP-curcumin demonstrated good stability and therapeutic applications, but it did not differ significantly (P>0.05) from groups A and B. However, the control group had a significantly lower score (P<0.001). Results of this study demonstrated the importance of developing new nanodrugs. In this case, the combination of AuNPs and curcumin yielded the nanodrug effects suggestive of a potential for application in the treatment of OA.
RESUMO
Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst-nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix-enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area.