Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071972

RESUMO

The biomedical potential of the edible red seaweed Agarophyton chilense (formerly Gracilaria chilensis) has not been explored. Red seaweeds are enriched in polyunsaturated fatty acids and eicosanoids, which are known natural ligands of the PPARγ nuclear receptor. PPARγ is the molecular target of thiazolidinediones (TZDs), drugs used as insulin sensitizers to treat type 2 diabetes mellitus. Medical use of TZDs is limited due to undesired side effects, a problem that has triggered the search for selective PPARγ modulators (SPPARMs) without the TZD side effects. We produced Agarophyton chilense oleoresin (Gracilex®), which induces PPARγ activation without inducing adipocyte differentiation, similar to SPPARMs. In a diet-induced obesity model of male mice, we showed that treatment with Gracilex® improves insulin sensitivity by normalizing altered glucose and insulin parameters. Gracilex® is enriched in palmitic acid, arachidonic acid, oleic acid, and lipophilic antioxidants such as tocopherols and ß-carotene. Accordingly, Gracilex® possesses antioxidant activity in vitro and increased antioxidant capacity in vivo in Caenorhabditis elegans. These findings support the idea that Gracilex® represents a good source of natural PPARγ ligands and antioxidants with the potential to mitigate metabolic disorders. Thus, its nutraceutical value in humans warrants further investigation.


Assuntos
Gracilaria/química , Resistência à Insulina/fisiologia , Obesidade/metabolismo , PPAR gama/metabolismo , Extratos Vegetais , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Caenorhabditis elegans , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Int J Pharm ; 567: 118487, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31271813

RESUMO

Fucoxanthin (FUCO) is a marine carotenoid characterized by antiproliferative properties against hyperproliferative cells. The aim of this work was to design and develop nanostructured lipidic carriers (NLCs) based on bacuri butter and tucumã oil and loaded with FUCO, intended for skin application to prevent skin hyperproliferative diseases and in particular psoriasis. The presence of FUCO should control the hyperproliferation of skin diseased cells and the lipids forming the NLC core, rich in antioxidants and characterized by wound healing properties, should favor the restoring of skin integrity. NLCs were coated with chitosan (CS) to improve their biopharmaceutical properties (bio/mucoadhesion and wound healing) and to combine the advantages of lipidic nanoparticles with the biological properties of CS. Chitosan coated and non-coated NLC were prepared by means of high shear homogenization and characterized for chemico-physical and biopharmaceutical properties (in vitro biocompatibility and cell uptake towards normal dermal human fibroblasts). Moreover, the pharmacological activity of FUCO loaded in NLCs was assessed in psoriatic-like cellular model. NLCs were characterized by dimensions ranging from about 250 to 400 nm. Moreover, the CS coating and FUCO loading determined an increase of size. Moreover, TEM and zeta potential analysis confirmed the presence of CS coating on nanoparticle surface, thus conferring to nanoparticle good bioadhesion properties. NLCs uptake in fibroblasts was observed and NLC-FUCO-CS caused a reduction of cell viability with a less marked effect in fibroblasts rather than in psoriatic cells, highlighting the capability of this system to control skin hyperproliferation and inflammation. The loading of NLC-FUCO-CS in pullulan film should render NLCs application easy, without impair prompt interaction of the drug with the skin. Considering the overall results skin application of CS coated NLCs loaded with FUCO seems a promising approach to control skin hyperproliferation and to preserve skin integrity in psoriatic skin.


Assuntos
Quitosana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanoestruturas/administração & dosagem , Xantofilas/administração & dosagem , Administração Cutânea , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lipídeos/administração & dosagem , Psoríase/tratamento farmacológico
3.
Eur J Pharm Sci ; 135: 51-59, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071439

RESUMO

Nanostructured lipid carriers (NLC) belong to youngest lipid-based nanocarrier class and they have gained increasing attention over the last ten years. NLCs are composed of a mixture of solid and liquid lipids, which solubilizes the active pharmaceutical ingredient, stabilized by a surfactant. The miscibility of the lipid excipients and structural changes (polymorphism) play an important role in the stability of the formulation and are not easily predicted in the early pharmaceutical development. Even when the excipients are macroscopically miscible, microscopic heterogeneities can result in phase separation during storage, which is only detected after several months of stability studies. In this sense, this work aimed to evaluate the miscibility and the presence of polymorphism in lipid mixtures containing synthetic (cetyl palmitate, Capryol 90®, Dhaykol 6040 LW®, Precirol ATO5® and myristyl myristate) and natural (beeswax, cocoa and shea butters, copaiba, sweet almond, sesame and coconut oils) excipients using Raman mapping and multivariate curve resolution - alternating least squares (MCR-ALS) method. The results were correlated to the macroscopic stability of the formulations. Chemical maps constructed for each excipient allowed the direct comparison among formulations, using standard deviation of the histograms and the Distributional Homogeneity Index (DHI). Lipid mixtures of cetyl palmitate/Capryol®; cetyl palmitate/Dhaykol®; myristyl myristate/Dhaykol® and myristyl myristate/coconut oil presented a single histogram distribution and were stable. The sample with Precirol®/Capryol® was not stable, although the histogram distribution was narrower than the samples with cetyl palmitate, indicating that miscibility was not the factor responsible for the instability. Structural changes before and after melting were identified for cocoa butter and shea butter, but not in the beeswax. Beeswax + copaiba oil sample was very homogenous, without polymorphism and stable over 6 months. Shea butter was also homogeneous and, in spite of the polymorphism, was stable. Formulations with cocoa butter presented a wider histogram distribution and were unstable. This paper showed that, besides the miscibility evaluation, Raman imaging could also identify the polymorphism of the lipids, two major issues in lipid-based formulation development that could help guide the developer understand the stability of the NLC formulations.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Diglicerídeos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Excipientes/química , Análise Multivariada , Miristatos/química , Palmitatos/química , Tamanho da Partícula , Óleos de Plantas/química , Polímeros/química , Propilenoglicóis/química , Solubilidade , Análise Espectral Raman , Tensoativos/química , Ceras/química
4.
Colloids Surf B Biointerfaces ; 164: 281-290, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29413607

RESUMO

Wound healing involves the integration of biological and molecular events and, in case of chronic wounds, the use of drugs can be associated to side effects. Therefore, there is a search for alternatives therapeutics that encompass minimal toxicity. The use of natural compounds is an attractive approach for treating inflammatory disorders, wounds and burns. In this context, thymol has antimicrobial, antioxidant and antiseptic properties and is a promising compound in wound healing and inflammation management. However, essential oils and their constituents such as thymol present high volatility and can also easily decompose, thereby the encapsulation of these compounds into nanoparticles may be an efficient approach to modulate the release of the active ingredient, to increase the physical stability and to eventually reduce the toxicity. The aims of this work were to encapsulate thymol in nanostructured lipid carriers (NLCs) composed of natural lipids and assess its in vivo anti-inflammatory and antipsoriatic activity. The carrier containing thymol was produced by sonication method and showed 107.7 (±3.8) nm of size, zeta potential of -11.6 (±2.9) mV and entrapment efficiency of 89.1 (±4.2)%. Thymol-NLCs were incorporated into a gel and the final formulation presented rheological characteristics and pH suitable for topic application. In addition, the gel containing thymol-NLCs was tested in vivo on two different mouse models of skin inflammation, showing anti-inflammatory activity. Finally, this formulation was tested in an imiquimod-induced psoriasis mouse model and showed improved healing, compared to negative control. Therefore, thymol-NLCs is an interesting formulation for future treatment of inflammatory skin diseases.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Lipídeos/química , Nanopartículas/química , Timol/administração & dosagem , Timol/uso terapêutico , Administração Tópica , Aminoquinolinas/efeitos adversos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Betametasona/administração & dosagem , Betametasona/farmacologia , Betametasona/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Orelha/patologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Humanos , Imiquimode , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Permeabilidade , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Reologia , Pele/efeitos dos fármacos , Sus scrofa , Timol/farmacologia
5.
J Microencapsul ; 31(7): 644-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24766207

RESUMO

PURPOSE: Solid-lipid microparticles loaded with high amounts of the sunscreen UV filter benzophenone-3 were prepared by spray congealing with the objective of decreasing its skin penetration and evaluate whether the sunscreen's photoprotection were impaired by the microencapsulation process. METHODS: The microparticles were produced using the natural lipids carnauba wax or bees wax and three different concentrations of benzophenone-3 (30, 50 and 70%) using spray congealing technique. RESULTS: The microparticles presented properties suitable for topical application, such as spherical morphology, high encapsulation efficiency (95.53-102.2%), average particle sizes between 28.5 and 60.0 µm with polydispersivities from 1.2 to 2.5. In studies of in vitro skin penetration and preliminary stability, formulations of gel cream containing carnauba wax solid lipid microparticles and 70% benzophenone-3 when compared to the formulation added of bees wax solid-lipid microparticles containing 70% benzophenone-3, was stable considering the several parameters evaluated and were able to decrease the penetration of the UV filter into pig skin. Moreover, the formulations containing solid lipid microparticles with 70% benzophenone-3 increased the photoprotective capacity of benzophenone-3 under UV irradiation. CONCLUSION: The results show that spray-congealed microparticles are interesting solid forms to decrease the penetration solar filters in the skin without compromising their photoprotection.


Assuntos
Benzofenonas , Lipídeos , Absorção Cutânea , Pele/metabolismo , Protetores Solares , Raios Ultravioleta/efeitos adversos , Ceras , Animais , Benzofenonas/química , Benzofenonas/farmacocinética , Benzofenonas/farmacologia , Cápsulas , Linhagem Celular , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Camundongos , Protetores Solares/química , Protetores Solares/farmacocinética , Protetores Solares/farmacologia , Suínos , Ceras/química , Ceras/farmacocinética , Ceras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA