Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Pathol Res Pract ; 263: 155626, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39353323

RESUMO

Non-coding RNAs (ncRNAs) contain circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and micro-ribonucleic acids (miRNAs). These RNAs receive good functionality in modulation of gene expressions & cellular roles. Recent research is shedding light on their pivotal roles in the pathophysiology of inflammatory meningitis, such as viral, fungal, or bacterial infections. This review addresses the intricate roles of non-coding RNAs (ncRNAs) that transcribe code-independent mRNA and other biological elements that control inflammation and immunological events extant during meningitis. ncRNAs, acting on a myriad of immune cell development, cytokine production, pathogen recognition, and so forth, finely orchestrate the host's immune response. Although lncRNAs and circRNAs are associated with gene networks regulating immune responses, miRNAs can precisely modulate the expression of pro- and anti-inflammatory cytokines. Moreover, ncRNAs have unique expression patterns in disease states and are stable in bio-fluids; therefore, they can serve as specific molecular biomarkers for meningitis concerning the diagnosis and prognosis. It might also be helpful to target ncRNAs as a therapeutic strategy to impact immune regulation and inflammation. Here, we review the current knowledge of how ncRNAs function in meningitis and discuss adopted approaches and perspectives and their implications for therapeutic strategies.

2.
Biomed Pharmacother ; 179: 117390, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39243424

RESUMO

The gastrointestinal tract is chronically inflamed in ulcerative colitis (UC), which has a complicated etiology involving immunological, environmental, and genetic factors. The inflammatory response that is typical of UC is significantly regulated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Latest research has displayed that NF-κB signaling is controlled by three main types of non-coding RNAs (ncRNAs): circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). These ncRNAs can change the expression of key genes within the NF-κB pathway by acting as molecular sponges, transcriptional regulators, and epigenetic modifiers. This review synthesizes current knowledge on the functions by which ncRNAs modulate NF-κB signaling in UC, discusses their potential as biomarkers for disease prognosis and diagnosis, and explores their therapeutic potential. Understanding the intricate interactions between ncRNAs and NF-κB signaling may provide novel insights into UC pathogenesis and targeted therapeutic strategies.


Assuntos
Colite Ulcerativa , NF-kappa B , Transdução de Sinais , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , NF-kappa B/metabolismo , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , RNA Circular/genética , RNA Circular/metabolismo
3.
Mol Biol Rep ; 51(1): 964, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240390

RESUMO

The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Sistema Imunitário , Neoplasias , RNA Longo não Codificante , Humanos , Neoplasias/genética , Neoplasias/imunologia , RNA Longo não Codificante/genética , Genes Homeobox/genética , Sistema Imunitário/metabolismo , Animais
4.
Cancer Cell Int ; 24(1): 316, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272133

RESUMO

Glioma is a primary brain tumor that grows quickly, has an unfavorable prognosis, and can spread intracerebrally. Glioma cells rely on glucose as the major energy source, and glycolysis plays a critical role in tumorigenesis and progression. Substrate utilization shifts throughout glioma progression to facilitate energy generation and biomass accumulation. This metabolic reprogramming promotes glioma cell proliferation and metastasis and ultimately decreases the efficacy of conventional treatments. Non-coding RNAs (ncRNAs) are involved in several glucose metabolism pathways during tumor initiation and progression. These RNAs influence cell viability and glucose metabolism by modulating the expression of key genes of the glycolytic pathway. They can directly or indirectly affect glycolysis in glioma cells by influencing the transcription and post-transcriptional regulation of oncogenes and suppressor genes. In this review, we discussed the role of ncRNAs in the metabolic reprogramming of glioma cells and tumor microenvironments and their abnormal expression in the glucometabolic pathway in glioma. In addition, we consolidated the existing theoretical knowledge to facilitate the use of this emerging class of biomarkers as biological indicators and potential therapeutic targets for glioma.

5.
BMC Genomics ; 25(1): 859, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277740

RESUMO

BACKGROUND: Milk is essential for mammalian nutrition because it provides vital nutrients for growth and development. Milk composition, which is influenced by genetic and environmental factors, supports lactation, a complex process crucial for milk production and quality. Recent research has focused on noncoding RNAs, particularly microRNAs (miRNAs), which are present in body fluids and regulate gene expression post-transcriptionally. This study comprehensively characterizes miRNAs in milk of four livestock species, namely Bubalus bubalis, Capra hircus, Equus asinus, and Ovis aries and identifies potential target genes. RESULTS: High-throughput sequencing of milk RNA resulted in distinct read counts across species: B. bubalis (8,790,441 reads), C. hircus (12,976,275 reads), E. asinus (9,385,067 reads), and O. aries (7,295,297 reads). E. asinus had the highest RNA mapping rate (94.6%) and O. aries the lowest (84.8%). A substantially greater proportion of miRNAs over other small RNAs was observed for the donkey milk sample (7.74%) compared to buffalo (0.87%), goat (1.57%), and sheep (1.12%). Shared miRNAs, which included miR-200a, miR-200b, miR-200c, and miR-23a among others, showed varying expression levels across species, confirmed by qPCR analysis. Functional annotation of predicted miRNA target genes highlighted diverse roles, with an enrichment in functions linked to metabolism and immunity. Pathway analysis identified immune response pathways as significant, with several miRNAs targeting specific genes across species, suggesting their regulatory function in milk. CONCLUSIONS: Both conserved and species-specific miRNAs were detected in milk of the investigated species. The identified target genes of these miRNAs have important roles in neonatal development, adaptation, growth, and immune response. Furthermore, they influence milk and meat production traits in livestock.


Assuntos
Gado , MicroRNAs , Leite , Animais , MicroRNAs/genética , Leite/metabolismo , Gado/genética , Sequenciamento de Nucleotídeos em Larga Escala , Cabras/genética , Análise de Sequência de RNA , Feminino , Especificidade da Espécie , Ovinos/genética , Perfilação da Expressão Gênica
6.
Virology ; 600: 110220, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244802

RESUMO

The global rise of oropharyngeal cancers (OPC) associated with the human papillomavirus (HPV) type 16 necessitates a deeper understanding of their underlying molecular mechanisms. Our study utilised RNA-sequencing data from The Cancer Genome Atlas (TCGA) to identify and analyse differentially expressed (DE) long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in HPV16-positive OPC, and to elucidate the interplay within the lncRNA/miRNA/mRNA regulatory network. We revealed 1929 DE lncRNAs and identified a significant expression shift in 37 of these, suggesting a regulatory 'sponge' function for miRNAs that modulate cellular processes. Notably, the lncRNA Linc00911 exhibited decreased expression in HPV16-positive OPC, a change directly attributable to HPV oncogenes E6 and E7 as confirmed by RT-qPCR in cell lines and patient samples. Our comprehensive analysis presents an expansive landscape of ncRNA-mRNA interactions, offering a resource for the ongoing pursuit of elucidating the molecular underpinnings of HPV-driven OPC.

7.
Open Life Sci ; 19(1): 20220936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119480

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.

8.
Pathol Res Pract ; 262: 155540, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142241

RESUMO

The PI3K/Akt pathway plays a critical role in the progression and treatment of oral squamous cell carcinoma (OSCC). Recent research has uncovered the involvement of long non-coding RNAs (lncRNAs) in regulating this pathway, influencing OSCC cell proliferation, survival, and metastasis. This review explores the latest findings on how certain lncRNAs act as either cancer promoters or cancer inhibitors within the PI3K/Akt signaling pathway. Certain lncRNAs act as oncogenic or tumor-suppressive agents, making them potential diagnostic and prognostic markers. Targeting these lncRNAs may lead to novel therapeutic strategies. The evolving fields of precision medicine and artificial intelligence promise advancements in OSCC diagnosis and treatment, enabling more personalized and effective patient care.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
9.
Pathol Res Pract ; 261: 155511, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094523

RESUMO

Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica
10.
Curr Genomics ; 25(3): 158-170, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-39087001

RESUMO

N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39167168

RESUMO

Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.

12.
Cancer Sci ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136293

RESUMO

Immune checkpoint inhibitor (ICI) therapies for tumors of different systems have attained significant achievements and have changed the current situation of tumor treatment due to their therapeutic characteristics of high specificity and low side effects. The immune checkpoint Programmed death 1/Programmed cell death-Ligand 1 (PD-1/PD-L1) axis exerts a vital role in the immune escape of tumor cells. As a result, it has become a key target for tumor immunotherapy. Therefore, to perfect research into potential regulatory factors for the PD-1/PD-L1 axis, in order to understand and illustrate tumor ICI therapy mechanisms, is a significant goal. Moreover, ncRNA has been verified to regulate the PD-1/PD-L1 axis in the tumor immune microenvironment to regulate tumor genesis and development. ncRNAs can improve or decrease the efficacy of ICI therapy by modulating PD-L1 expression. This review aimed to investigate the mechanisms of action of ncRNA in regulating the PD-1/PD-L1 axis in ICI therapy, to provide more efficient immunotherapy for tumors of different systems.

13.
EMBO Mol Med ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198715

RESUMO

Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39021168

RESUMO

Cancer is one of the main reasons for death, and it threatens human life and health. Both the environment and genes can lead to cancers. It dates back more than a million years; more importantly, tumor cells can not be detected until they grow to a large number. Currently, cancers are treated with surgical excision or non-surgical procedures. By studying the interaction between ncRNAs and PKM2, we aim to provide new targets for diagnosis, treatment, and prognosis for cancers. Read relevant articles and made a summary and classification. Non-coding RNAs (ncRNAs) are RNAs that do not code for proteins. They perform a function in transcription and translation and can be used as targets for cancer therapy. Pyruvate kinase M2 (PKM2) is a form of PKM, and it catalyzes the glycolysis of the final cellular processes to promote tumorigenesis. Not only that, but it also plays non-metabolic functions, including the expression of the gene, cell proliferation, cell migration, and tumor angiogenesis in cancer cells. The existing studies have found that microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) can promote or inhibit the aerobic glycolysis of cancer cells by affecting PKM2, which increases or decrease the risk of cancers and affect the progression of cancers. This review focuses on the mechanism of ncRNAs regulating PKM2 in cancers and summarizes the roles of some ncRNAs.

15.
J Nanobiotechnology ; 22(1): 398, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970103

RESUMO

Diabetic wounds are characterized by incomplete healing and delayed healing, resulting in a considerable global health care burden. Exosomes are lipid bilayer structures secreted by nearly all cells and express characteristic conserved proteins and parent cell-associated proteins. Exosomes harbor a diverse range of biologically active macromolecules and small molecules that can act as messengers between different cells, triggering functional changes in recipient cells and thus endowing the ability to cure various diseases, including diabetic wounds. Exosomes accelerate diabetic wound healing by regulating cellular function, inhibiting oxidative stress damage, suppressing the inflammatory response, promoting vascular regeneration, accelerating epithelial regeneration, facilitating collagen remodeling, and reducing scarring. Exosomes from different tissues or cells potentially possess functions of varying levels and can promote wound healing. For example, mesenchymal stem cell-derived exosomes (MSC-exos) have favorable potential in the field of healing due to their superior stability, permeability, biocompatibility, and immunomodulatory properties. Exosomes, which are derived from skin cellular components, can modulate inflammation and promote the regeneration of key skin cells, which in turn promotes skin healing. Therefore, this review mainly emphasizes the roles and mechanisms of exosomes from different sources, represented by MSCs and skin sources, in improving diabetic wound healing. A deeper understanding of therapeutic exosomes will yield promising candidates and perspectives for diabetic wound healing management.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Cicatrização , Exossomos/metabolismo , Humanos , Animais , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo , Pele/metabolismo , Estresse Oxidativo , Complicações do Diabetes
16.
Gene ; 928: 148806, 2024 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-39074643

RESUMO

Post-operative cognitive dysfunction (POCD) refers to the functional impairment of the nervous system caused by prolonged exposure to anesthetics. It is known that prolonged exposure to anesthetics may increase the risk for the development of several cognitive impairments. The drugs used to induce general anesthesia are generally safe, owing to the CNS's direct and/or indirect self-protective activity against drug-induced damages. Non-coding RNAs have recently started to gain attention to better understand the mechanism of gene regulation correlated to cellular physiology and pathology. In order to provide new insights for the neuroprotective function of highly expressed ncRNAs in the central nervous system, we investigated their expression profile in the circulating exosomes of patients exposed to anesthesia vs healthy controls. The experimental design envisaged the recruitment of 30 adult patients undergoing general anesthesia and healthy controls. The effects of anesthetics have been evaluated on miR-34a and miR-124, on the lncRNAs MALAT-1, HOTAIR, GAS5, BLACAT1, HULC, PANDA, and on YRNAs. NcRNAs miR-34a, miR-124, MALAT-1, HOTAIR, GAS5, BLACAT1, and YRNA1 are significantly overexpressed following anesthesia, while YRNA5 is significantly down regulated. Some of them have neuroprotective function, while other correlate with neurological dysfunctions. Our data suggests that, during anesthesia, the toxic action of some non-coding RNAs could be compensated by other non-coding RNAs, both synthesized by the CNS or also transported into neurons from other tissues. It is reasonable to suppose a mutual action of these molecules likely to secure the CNS from anesthetics, that drive a convoluted cascade of ncRNA-dependent biological counter-responses. Our findings are novel in the field of brain dysfunction, indicating that some of the analyzed ncRNAs, although several of their functions still need to be addressed, could be suggested as potential biomarkers and therapeutic targets in post-operative cognitive dysfunction-related processes.


Assuntos
Disfunção Cognitiva , RNA não Traduzido , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Disfunção Cognitiva/genética , Disfunção Cognitiva/induzido quimicamente , Adulto , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/sangue , Complicações Cognitivas Pós-Operatórias/metabolismo , RNA Longo não Codificante/genética , Anestesia Geral/efeitos adversos , Idoso , Exossomos/metabolismo , Exossomos/genética , Estudos de Casos e Controles , Regulação da Expressão Gênica/efeitos dos fármacos
17.
Int Immunopharmacol ; 140: 112764, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39079348

RESUMO

Toll-like receptors (TLRs) have a convoluted role in cancer even though they are crucial to the immune system. By bridging the innate immune system and cancer, TLRs have a very complex impact on the formation of tumors and the effectiveness of anti-cancer treatments. TLR signaling links the innate and adaptive immune systems and initiates direct pathogen eradication. In cancer immunopathogenesis and treatment resistance, long non-coding RNAs (lncRNAs) modify TLR signaling linkages with immunological and non-immunological pathways. We identified lncRNAs that positively and negatively control TLR signaling, impacting immunological response and drug sensitivity. These results highlight the complex interactions between long non-coding RNAs and TLRs that influence the start of cancer and its response to treatment. Targeting specific lncRNAs is a practical way to control TLR signaling and perhaps enhance anti-tumor immunity while overcoming medication resistance. We provide a framework for developing novel immunotherapeutic regimens and customized medicine approaches for cancer treatment. The exact mechanisms by which lncRNAs regulate TLR signaling pathways should be defined by further research, and these findings should be validated in clinical situations. This finding makes future research of lncRNA-based drugs in combination with existing cancer treatments feasible.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , RNA Longo não Codificante , Transdução de Sinais , Receptores Toll-Like , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptores Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Imunidade Inata , Imunoterapia/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
19.
Noncoding RNA Res ; 9(4): 1222-1234, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39036600

RESUMO

Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.

20.
Front Genet ; 15: 1429411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036703

RESUMO

Pest control heavily relies on chemical pesticides has been going on for decades. However, the indiscriminate use of chemical pesticides often results in the development of resistance in pests. Almost all pests have developed some degree of resistance to pesticides. Research showed that the mechanisms of insecticide resistance in insects encompass metabolic resistance, behavioral resistance, penetration resistance and target-site resistance. Research on the these mechanisms has been mainly focused on the cis-regulatory or trans-regulatory for the insecticide resistance-related genes, with less attention paid to non-coding RNAs (ncRNAs), such as microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). There has been increased studies focus on understanding how these ncRNAs are involved in post-transcriptional regulation of insecticide resistance-related genes. Besides, the formatted endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA) has been identified as a key player in governing insect resistance formation. This review delves into the functions and underlying mechanisms of miRNA, lncRNA, and circRNA in regulating insect resistance. ncRNAs orchestrate insect resistance by modulating the expression of detoxification enzyme genes, insecticide target genes, as well as receptor genes, effectively regulating both target-site, metabolic and penetration resistance in insects. It also explores the regulatory mechanisms of ceRNA networks in the development of resistance. By enhancing our understanding of the mechanisms of ncRNAs in insecticide resistance, it will not only provide valuable insights into the new mechanisms of insecticide resistance but also help to enrich new directions in ncRNAs gene regulation research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA