Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Environ Pollut ; 360: 124645, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39095001

RESUMO

Microplastics (MPs) have emerged as a pervasive environmental pollutant of global concern. Their detection within the human placenta and fetal organs has prompted apprehension regarding the potential hazards of MPs during early organogenesis. The kidney, a vital multifunctional organ, is susceptible to damage from MPs in adulthood. However, the precise adverse effects of MP exposure on human nephrogenesis remain ambiguous due to the absence of a suitable model. Here, we explore the potential impact of MPs on early kidney development utilizing human kidney organoids in vitro. Human kidney organoids were subjected to polystyrene-MPs (PS-MPs, 1 µm) during the nephron progenitor cell (NPC) stage, a critical phase in early kidney development and patterning. We delineate the effects of PS-MPs on various stages of nephrogenesis, including NPC, renal vesicle, and comma-shaped body, through sequential examination of kidney organoids. PS-MPs were observed to adhere to the surface of cells during the NPC stage and accumulate within glomerulus-like structures within kidney organoids. Moreover, both short- and long-term exposure to PS-MPs resulted in diminished organoid size and aberrant nephron structure. PS-MP exposure heightened reactive oxygen species (ROS) production, leading to NPC apoptosis during early kidney development. Increased apoptosis, diminished cell viability, and NPC reduction likely contribute to the observed organoid size reduction under PS-MP treatment. Transcriptomic analysis at both NPC and endpoint stages revealed downregulation of Notch signaling, resulting in compromised proximal and distal tubular structures, thereby disrupting normal nephron patterning following PS-MP exposure. Our findings highlight the significant disruptive impact of PS-MPs on human kidney development, offering new insights into the mechanisms underlying PS-MP-induced nephron toxicity.

2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999938

RESUMO

The purpose of this study was to evaluate the spatiotemporal immunoexpression pattern of microtubule-associated protein 1 light chain 3 beta (LC3B), glucose-regulated protein 78 (GRP78), heat shock protein 70 (HSP70), and lysosomal-associated membrane protein 2A (LAMP2A) in normal human fetal kidney development (CTRL) and kidneys affected with congenital anomalies of the kidney and urinary tract (CAKUT). Human fetal kidneys (control, horseshoe, dysplastic, duplex, and hypoplastic) from the 18th to the 38th developmental week underwent epifluorescence microscopy analysis after being stained with antibodies. Immunoreactivity was quantified in various kidney structures, and expression dynamics were examined using linear and nonlinear regression modeling. The punctate expression of LC3B was observed mainly in tubules and glomerular cells, with dysplastic kidneys displaying distinct staining patterns. In the control group's glomeruli, LAMP2A showed a sporadic, punctate signal; in contrast to other phenotypes, duplex kidneys showed significantly stronger expression in convoluted tubules. GRP78 had a weaker expression in CAKUT kidneys, especially hypoplastic ones, while normal kidneys exhibited punctate staining of convoluted tubules and glomeruli. HSP70 staining varied among phenotypes, with dysplastic and hypoplastic kidneys exhibiting stronger staining compared to controls. Expression dynamics varied among observed autophagy markers and phenotypes, indicating their potential roles in normal and dysfunctional kidney development.


Assuntos
Autofagia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Rim , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas Associadas aos Microtúbulos , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Rim/metabolismo , Rim/anormalidades , Rim/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sistema Urinário/metabolismo , Sistema Urinário/anormalidades , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/patologia
3.
Biochem Soc Trans ; 52(4): 1861-1871, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38934505

RESUMO

Kidney organoids - 3D representations of kidneys made either from pluripotent or tissue stem cells - have been available for well over a decade. Their application could confer notable benefits over longstanding in vivo approaches with the potential for clinically aligned human cells and reduced ethical burdens. They been used, at a proof-of-concept level, in development in disease modeling (including with patient-derived stem cells), and in screening drugs for efficacy/toxicity. They differ from real kidneys: they represent only foetal-stage tissue, in their simplest forms they lack organ-scale anatomical organization, they lack a properly arranged vascular system, and include non-renal cells. Cell specificity may be improved by better techniques for differentiation and/or sorting. Sequential assembly techniques that mimic the sequence of natural development, and localized sources of differentiation-inducing signals, improve organ-scale anatomy. Organotypic vascularization remains a challenge: capillaries are easy, but the large vessels that should serve them are absent from organoids and, even in cultured real kidneys, these large vessels do not survive without blood flow. Transplantation of organoids into hosts results in their being vascularized (though probably not organotypically) and in some renal function. It will be important to transplant more advanced organoids, with a urine exit, in the near future to assess function more stringently. Transplantation of human foetal kidneys, followed by nephrectomy of host kidneys, keeps rats alive for many weeks, raising hope that, if organoids can be produced even to the limited size and complexity of foetal kidneys, they may one day be useful in renal replacement.


Assuntos
Diferenciação Celular , Rim , Organoides , Organoides/citologia , Humanos , Rim/citologia , Animais
4.
Front Med (Lausanne) ; 11: 1363097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601116

RESUMO

Preterm birth, defined as birth before the gestational age of 37 weeks, affects 11% of the newborns worldwide. While extensive research has focused on the immediate complications associated with prematurity, emerging evidence suggests a link between prematurity and the development of kidney disease later in life. It has been demonstrated that the normal course of kidney development is interrupted in infants born prematurely, causing an overall decrease in functional nephrons. Yet, the pathogenesis leading to the alterations in kidney development and the subsequent pathophysiological consequences causing kidney disease on the long-term are incompletely understood. In the present review, we discuss the current knowledge on nephrogenesis and how this process is affected in prematurity. We further discuss the epidemiological evidence and experimental data demonstrating the increased risk of kidney disease in these individuals and highlight important knowledge gaps. Importantly, understanding the intricate interplay between prematurity, abnormal kidney development, and the long-term risk of kidney disease is crucial for implementing effective preventive and therapeutic strategies.

5.
Kidney Int Rep ; 9(2): 436-450, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344733

RESUMO

Introduction: Human nephrogenesis is typically completed by 36 weeks gestation; however, it is impacted by preterm birth. Early studies suggested that nephrogenesis persisted for ≤40 postnatal days in preterm infants. However, the postmenstrual age (PMA) of the preterm infants who survived >40 days was uncertain. In this study, we sought to reexamine postnatal kidney development in preterm infants surviving >40 days. Methods: Human kidney samples were obtained from an institutional biobank. Samples were considered controls if survival was ≤4 days after birth with PMA of 30 to ≤36 weeks. Kidneys from preterm neonates with postnatal survival >40 days and PMA of 30 to ≤36 weeks were compared to controls. We counted glomerular generations, measured nephrogenic zone widths (NZW), and performed immunofluorescence (IF) with SIX1 and RET. We compared kidney weights and quantified the cross-sectional area of proximal (lotus tetragonolobus lectin [LTL], SL22A2), distal (SLC12A3, KCNJ10), and glomerular (nephrin) markers using IF. Results: Seven preterm infants surviving >40 days and 8 controls were analyzed. Four of 7 preterm infants had histologic and molecular evidence of nephrogenesis. Cessation of nephrogenesis in preterm infants occurred 2 weeks earlier than PMA-matched controls with attenuated expression of both SIX1 and RET. We found increased kidney weight-to-body weight ratio, increased distal tubular cross-sectional staining in the superficial nephrons, and distal tubular hypertrophy and hyperplasia in the preterm infant kidneys. Conclusion: Our study supports that nephrogenesis in preterm infants persists longer than previously thought with evidence of early nephron stress, placing importance on the neonatal environment.

6.
Pediatr Nephrol ; 39(3): 645-653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37572115

RESUMO

During the early stages of the development of the living multiorgan systems, genome modifications other than sequence variation occur that guide cell differentiation and organogenesis. These modifications are known to operate as a fetal programming code during this period, and recent research indicates that there are some tissue-specific codes in organogenesis whose effects may persist after birth until adulthood. Consequently, the events that disrupt the pre-established epigenetic pattern could induce shifts in organ physiology, with implications on health from birth or later in adult life. Chronic kidney disease (CKD) is one of the main causes of mortality worldwide; its etiology is multifactorial, but diabetes, obesity, and hypertension are the main causes of CKD in adults, although there are other risk factors that are mainly associated with an individual's lifestyle. Recent studies suggest that fetal reprogramming in the developing kidney could be implicated in the susceptibility to kidney disease in both childhood and adulthood. Some epigenetic modifications, such as genome methylation status, dysregulation of miRNA, and histone coding alterations in genes related to the regulation of the renin-angiotensin axis, a common denominator in CKD, may have originated during fetal development. This review focuses on epigenetic changes during nephrogenesis and their repercussions on kidney health and disease. In addition, the focus is on the influence of environmental factors during pregnancy, such as maternal metabolic diseases and dietary and metabolic conditions, as well as some sex differences in fetal kidney reprogramming during which dysregulation of the renin-angiotensin system is involved.


Assuntos
Insuficiência Renal Crônica , Sistema Renina-Angiotensina , Gravidez , Feminino , Humanos , Masculino , Criança , Sistema Renina-Angiotensina/genética , Caracteres Sexuais , Rim , Renina
7.
Front Cell Dev Biol ; 11: 1273923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077999

RESUMO

Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.

8.
Cell Commun Signal ; 21(1): 358, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110951

RESUMO

BACKGROUND: During kidney organogenesis, metanephric mesenchyme (MM) and ureteric bud (UB) interact reciprocally to form nephrons. Signaling stimuli involved in these interactions include Wnts, growth factors and nano/micro particles. How UB and MM are interacting is not completely understood. Our study investigated the signaling and communication via extracellular vesicles (EVs) during nephrogenesis. Embryonic day (E) 11.5 mouse kidney UB and MM produce very low number of primary cells that have limited ability for proliferation in culture. Such limitations obstruct studying the role of EVs in induction of nephrogenesis. These issues necessitate to generate a nephrogenesis model allowing to study the comprehensive role of EVs during nephrogenesis. RESULTS: Our study generated a UB derived cell line-based in vitro flexible model of nephrogenesis allowing expandable cell culturing, in addition to performing characterization, tracking and blocking of EVs. UB cell line aggregation with E11.5 MM cells induced the formation of segmented nephrons. Most efficient nephrogenesis was obtained by the co-culturing of 30,000 cells of UB cell line with 50,000 MM cells. Results revealed that both the UB and the MM secrete EVs during nephrogenesis. UB cell line derived EVs were characterized by their size, morphology and expression of markers (CD63, TSG101, CD9 and CD81). Furthermore, proteomics data of UB cell line-derived EVs revealed large number of proteins involved in nephrogenesis-related signaling pathways. Palmitoylated GFP-tagged EVs from UB cell line were found in the nephron formation zone in the developing kidney organoid. UB cell line derived EVs did not induce nephrogenesis in MM cells but significantly contributed to the survival and nephrogenesis-competency of MM cells. The secretion of EVs was continuously inhibited during the ongoing nephrogenesis by the knockdown of RalA and RalB gene expression using short hairpin RNAs. This inhibition partially impaired the ability of UB cell line to induce nephrogenesis. Moreover, impaired nephrogenesis was partially rescued by the addition of EVs. CONCLUSION: Our study established a novel in vitro flexible model of nephrogenesis that solved the limitations of primary embryonic kidney cells and mouse embryonic stem cell kidney organoids for the EV research. EVs were found to be an integral part of nephrogenesis process. Video Abstract.


Assuntos
Vesículas Extracelulares , Rim , Animais , Camundongos , Organoides , Organogênese
9.
Mol Cell Pediatr ; 10(1): 18, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012334

RESUMO

BACKGROUND: The kidneys of preterm and low birth weight babies reflect vulnerability, since several noxae can evoke the termination of nephron formation. This again leads to oligonephropathy with severe consequences for health in the later life. While the clinical parameters have been intensely investigated, only little is known about the initial traces left by the noxae. For the fetal human kidney, solely the lack of basophilic S-shaped bodies and the reduction in width of the nephrogenic zone were registered. It is not known in how far also the involved progenitor cells, the earlier nephron stages, the collecting duct (CD) ampullae, and the local interstitium are collaterally harmed. AIM: The interstitium at the forming nephron is heterogeneously structured. Thereby, it fulfills quite different mastering and integrative tasks. Since data dealing with the installation of a nephron is not available, the microanatomical features were recorded. RESULTS: The microscopic specimens show that the installation of the transient stages of nephron anlage is not synchronized. Instead, it is controlled within a nephrogenic compartment of the nephrogenic zone. It starts near the renal capsule by positioning the nephrogenic niche so that the nephrogenic progenitor cells face the epithelial progenitor cell at the tip of a CD ampulla. Then, the induced nephrogenic progenitor cells assimilate in the pretubular aggregate. While its medial part remains opposite the head of the CD ampulla, at its proximal end, the primitive renal vesicle is formed. Only a part of it separates to stick to the section border between the head and conus of the CD ampulla. This marks the link with the future connecting tubule at the distal pole of the extending renal vesicle. Meanwhile, the proximal pole is mounted next to the connecting tubule of an earlier developed nephron. The resulting two-point mounting serves a common elongation of the conus at the CD ampulla and the medial aspect of the comma-shaped body. In the S-shaped body, it supports to defoliate the arising glomerulus and to link it with the perforating radiate artery at its deep lateral aspect. CONCLUSIONS: The investigation depicts that the installation is an interactive process between the stages of nephron anlage and its structural neighbors. A special meaning has the interjacent interstitium. It is vital for the positioning, shaping, and physiological integration. Due to its special location, this is mainly exposed to noxae.

10.
Nutr Metab (Lond) ; 20(1): 50, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990266

RESUMO

BACKGROUND: This study investigated the effect of uteroplacental insufficiency (UPI) on renal development by detecting metabolic alterations in the kidneys of rats with intrauterine growth restriction (IUGR). METHODS: On gestational day 17, pregnant Sprague Dawley rats were selected and allocated randomly to either the IUGR group or the control group. The IUGR group received a protocol involving the closure of bilateral uterine vessels, while the control group underwent a sham surgery. The rat pups were delivered on gestational day 22 by natural means. Pups were randomly recruited from both the control and IUGR groups on the seventh day after birth. The kidneys were surgically removed to conduct Western blot and metabolomic analyses. RESULTS: IUGR was produced by UPI, as evidenced by the significantly lower body weights of the pups with IUGR compared to the control pups on postnatal day 7. UPI significantly increased the levels of cleaved caspase-3 (p < 0.05) and BAX/Bcl-2 (p < 0.01) in the pups with IUGR. Ten metabolites exhibited statistically significant differences between the groups (q < 0.05). Metabolic pathway enrichment analysis demonstrated statistically significant variations between the groups in the metabolism related to fructose and mannose, amino and nucleotide sugars, and inositol phosphate. CONCLUSIONS: UPI alters kidney metabolism in growth-restricted newborn rats and induces renal apoptosis. The results of our study have the potential to provide new insights into biomarkers and metabolic pathways that are involved in the kidney changes generated by IUGR.

11.
J Dev Orig Health Dis ; 14(5): 559-569, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37969035

RESUMO

The effect of smoking and nicotine exposure during pregnancy on fetal nephrogenesis is a growing area of research. The objective of this systematic review is to summarise the current evidence in this research field. Our literature search identified a total of 415 articles from PubMed, Embase, Scopus, and Cochrane. After electronic sorting and manual screening, 18 eligible articles were found, 6 being human studies and 12 being animal studies. Articles that did not study nicotine or smoking, did not focus on fetal kidney development, or did not include nicotine or smoking exposure during pregnancy were excluded from the systematic review. The main outcomes of the studies were kidney weight, volume and size, kidney histopathology and morphology, and kidney function. Evidence from human studies identified a reduction in fetal kidney size, volume, and weight in offspring exposed to smoking during pregnancy; and the greatest impact was seen in offspring exposed to >5-10 cigarettes per day. Animal studies investigated kidney histopathology and highlighted kidney injury and microscopic changes in response to nicotine exposure during pregnancy. Further research is required to determine the impact on kidney function. Recreational nicotine use is evolving, and with the increasing use of urine cotinine in the evaluation of nicotine exposure, further research is needed.


Assuntos
Nicotina , Fumar , Gravidez , Feminino , Animais , Humanos , Fumar/efeitos adversos , Nicotina/toxicidade , Cotinina , Cuidado Pré-Natal , Feto
12.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686237

RESUMO

Melanoma-associated antigen D2 (MAGED2) plays an essential role in activating the cAMP/PKA pathway under hypoxic conditions, which is crucial for stimulating renal salt reabsorption and thus explaining the transient variant of Bartter's syndrome. The cAMP/PKA pathway is also known to regulate autophagy, a lysosomal degradation process induced by cellular stress. Previous studies showed that two members of the melanoma-associated antigens MAGE-family inhibit autophagy. To explore the potential role of MAGED2 in stress-induced autophagy, specific MAGED2-siRNA were used in HEK293 cells under physical hypoxia and oxidative stress (cobalt chloride, hypoxia mimetic). Depletion of MAGED2 resulted in reduced p62 levels and upregulation of both the autophagy-related genes (ATG5 and ATG12) as well as the autophagosome marker LC3II compared to control siRNA. The increase in the autophagy markers in MAGED2-depleted cells was further confirmed by leupeptin-based assay which concurred with the highest LC3II accumulation. Likewise, under hypoxia, immunofluorescence in HEK293, HeLa and U2OS cell lines demonstrated a pronounced accumulation of LC3B puncta upon MAGED2 depletion. Moreover, LC3B puncta were absent in human fetal control kidneys but markedly expressed in a fetal kidney from a MAGED2-deficient subject. Induction of autophagy with both physical hypoxia and oxidative stress suggests a potentially general role of MAGED2 under stress conditions. Various other cellular stressors (brefeldin A, tunicamycin, 2-deoxy-D-glucose, and camptothecin) were analyzed, which all induced autophagy in the absence of MAGED2. Forskolin (FSK) inhibited, whereas GNAS Knockdown induced autophagy under hypoxia. In contrast to other MAGE proteins, MAGED2 has an inhibitory role on autophagy only under stress conditions. Hence, a prominent role of MAGED2 in the regulation of autophagy under stress conditions is evident, which may also contribute to impaired fetal renal salt reabsorption by promoting autophagy of salt-transporters in patients with MAGED2 mutation.


Assuntos
Autofagia , Melanoma , Humanos , Células HEK293 , Autofagia/genética , Estresse Oxidativo , Autofagossomos , Cloreto de Sódio , Cloreto de Sódio na Dieta , Antígenos de Neoplasias , Proteínas Adaptadoras de Transdução de Sinal
13.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762531

RESUMO

Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 µM cisplatin (CisPt) or 12.5-100 µM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 µM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Humanos , Camundongos , Animais , RNA-Seq , Linhagem Celular , Túbulos Renais Proximais/metabolismo , Cisplatino/metabolismo
14.
Mol Cell Pediatr ; 10(1): 8, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624430

RESUMO

BACKGROUND: Clinical studies suggest that female sex plays a protective role in the development and progression of kidney disease. Recent experimental studies indicate that in male rats early nephron loss under ongoing nephrogenesis is accompanied by severe long-term sequelae. In humans, nephron formation occurs mainly in the third trimester, ceasing with 36 weeks of gestation. Due to perinatal complications, preterm infants delivered during this vulnerable period may undergo acute nephron loss. In rats nephrogenesis persists until postnatal day 10, reflecting the situation of human preterms with persisting nephrogenesis. In our animal model of neonatal uninephrectomy, female and male rats were uninephrectomized at day 1 of life. Hypothesizing sex-dependent differences, long-term renal outcome was assessed after 1 year. RESULTS: In both sexes, neonatal uninephrectomy was not followed by arterial hypertension at 1 year of age. Compensatory weight gain and glomerular hypertrophy of the remaining kidney occurred in uninephrectomized female and male animals. Selected markers of interstitial inflammation and fibrosis were regulated sex-dependently. The expression of monocyte chemoattractant protein-1 was increased in females, while tubulointerstitial infiltration by M1 macrophages was significantly higher in males after neonatal uninephrectomy. Neonatally uninephrectomized male rats had more glomerulosclerosis and podocyte damage compared to females, which was assessed by a semiquantitative score and desmin staining. RT-PCR revealed that after neonatal uninephrectomy in the remaining contralateral kidney of female rats the expression of candidate genes of renal development and function, i.e., wt-1, nephrin, synaptopodin, gdnf, and itga8 was higher than in males. CONCLUSIONS: Based on these observations we conclude that female sex is protective in the long-term response of the kidney to acute nephron loss under active nephrogenesis.

15.
Biomedicines ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37238991

RESUMO

This study aims to determine the protein expression patterns of acetylated α-tubulin, inversin, dishevelled-1, Wnt5a/b, and ß-catenin in developing (E13.5 and E15.5) and early postnatal (P4 and P14) kidneys of Dab1-/- (yotari) mice, their role in regulating the Wnt signaling pathway, and the possible relation to congenital anomalies of kidney and urinary tract (CAKUT). The analysis of target protein co-expression, observed in the renal vesicles/immature glomeruli, ampullae/collecting ducts, convoluted tubules, metanephric mesenchyme of developing kidneys, but proximal convoluted tubules, distal convoluted tubules and glomeruli of postnatal kidneys, was performed using double immunofluorescence and semi-quantitative methods. The overall expression of acetylated α-tubulin and inversin during normal kidney development increases with higher expression in yotari mice as the kidney acquires mature morphology. An increase in ß-catenin and cytosolic DVL-1 levels, indicating a switch from non-canonical to canonical Wnt signaling, is found in the postnatal kidney of yotari mice. In contrast, healthy mouse kidney expresses inversin and Wnt5a/b in the postnatal period, thus activating non-canonical Wnt signaling. Target protein expression patterns in kidney development and the early postnatal period observed in this study could indicate that switching between canonical and non-canonical Wnt signaling is crucial for normal nephrogenesis, while the defective Dab1 gene product in yotari mice may promote CAKUT due to interfering with this process.

16.
Dev Dyn ; 252(9): 1224-1239, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37227110

RESUMO

BACKGROUND: Kidney development is regulated by cellular interactions between the ureteric epithelium, mesenchyme, and stroma. Previous studies demonstrate essential roles for stromal ß-catenin in kidney development. However, how stromal ß-catenin regulates kidney development is not known. We hypothesize that stromal ß-catenin modulates pathways and genes that facilitate communications with neighboring cell populations to regulate kidney development. RESULTS: We isolated purified stromal cells with wild type, deficient, and overexpressed ß-catenin by fluorescence-activated cell sorting and conducted RNA Sequencing. A Gene Ontology network analysis demonstrated that stromal ß-catenin modulates key kidney developmental processes, including branching morphogenesis, nephrogenesis and vascular formation. Specific stromal ß-catenin candidate target genes that may mediate these effects included secreted, cell-surface and transcriptional factors that regulate branching morphogenesis and nephrogenesis (Wnts, Bmp, Fgfr, Tcf/Lef) and secreted vascular guidance cues (Angpt1, VEGF, Sema3a). We validated established ß-catenin targets including Lef1 and novel candidate ß-catenin targets including Sema3e which have unknown roles in kidney development. CONCLUSIONS: These studies advance our understanding of gene and biological pathway dysregulation in the context of stromal ß-catenin misexpression during kidney development. Our findings suggest that during normal kidney development, stromal ß-catenin may regulate secreted and cell-surface proteins to communicate with adjacent cell populations.


Assuntos
Ureter , beta Catenina , beta Catenina/genética , beta Catenina/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Ureter/metabolismo , Transdução de Sinais
17.
Tissue Barriers ; : 2219605, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254823

RESUMO

Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.

18.
Pediatr Nephrol ; 38(12): 3963-3973, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36867265

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) result from disruptions in normal kidney and urinary tract development during fetal life and collectively represent the most common cause of kidney failure in children worldwide. The antenatal determinants of CAKUT are diverse and include mutations in genes responsible for normal nephrogenesis, alterations in maternal and fetal environments, and obstruction within the normal developing urinary tract. The resultant clinical phenotypes are complex and depend on the timing of the insult, the penetrance of underlying gene mutations, and the severity and timing of obstruction related to the sequence of normal kidney development. Consequently, there is a broad spectrum of outcomes for children born with CAKUT. In this review, we explore the most common forms of CAKUT and those most likely to develop long-term complications of their associated kidney malformations. We discuss the relevant outcomes for the different forms of CAKUT and what is known about clinical characteristics across the CAKUT spectrum that are risk factors of long-term kidney injury and disease progression.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Criança , Feminino , Humanos , Gravidez , Rim/anormalidades , Sistema Urinário/anormalidades , Anormalidades Urogenitais/complicações , Anormalidades Urogenitais/epidemiologia , Anormalidades Urogenitais/genética , Fatores de Risco , Progressão da Doença
19.
Acta Histochem ; 125(1): 151994, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610219

RESUMO

Although the regeneration of renal glomeruli and nephrons after injuries especially in adult mammals is not possible, understanding normal glomerular histogenesis is important. Here, we sought to study the morphometrical and histological development of the normal renal glomeruli of rabbits from birth until postnatal day 40. Moreover, we immunohistochemically evaluated the extent and rate of the Lgr5 expression in the immature renal stem/progenitor cells. The untreated, clinically healthy inbred indigenous rabbits (from Duhok city of Iraqi Kurdistan) were sacrificed at postnatal days 1, 10, 15, 30, and 40. After being processed and embedded in paraffin, rabbit anti-human Lgr5 as a primary antibody and rabbit ImmunoCruz LSAB as a staining kit were used for the immunohistochemical detection of Lgr5+ve cells. For normal histology, hematoxylin and eosin were used. The peak generation and regression of renal corpuscles were at postnatal days 10, and 40, respectively, with 50% decrease. The glomeruli diameter significantly increased (1.3-fold, p = 0.001), whereas the Bowman's space diameter decreased (50%, p < 0.0001) from postnatal day 1-40. The immature nephrons were seen only in one-day postnatal rabbits. While the superficial glomeruli were compact and small, the juxtamedullary glomeruli were larger and segmented. The formation and development of the juxtaglomerular apparatus were documented at postnatal days 30 and 40 only. Our data revealed highly expressed Lgr5 protein at postnatal day one, and the expression level decreased gradually with advancing age. It was moderately expressed on day 10 and mildly expressed on day 15, whereas no expression was recorded on days 30 and 40 postnatally. Our study provides evidence that the Lgr5 gene, within multipotent stem cells and their lineage progeny, was activated within newly formed glomeruli throughout the early postnatal stages of nephrogenesis.


Assuntos
Nefropatias , Glomérulos Renais , Animais , Coelhos , Glomérulos Renais/metabolismo , Rim , Nefropatias/metabolismo , Mamíferos
20.
Dev Dyn ; 252(4): 463-482, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36335435

RESUMO

BACKGROUND: The interstitial extracellular matrix (ECM) is comprised of proteins and glycosaminoglycans and provides structural and biochemical information during development. Our previous work revealed the presence of transient ECM-based structures in the interstitial matrix of developing kidneys. Stromal cells are the main contributors to interstitial ECM synthesis, and the transcription factor Forkhead Box D1 (Foxd1) is critical for stromal cell function. To investigate the role of Foxd1 in interstitial ECM patterning, we combined 3D imaging and proteomics to explore how the matrix changes in the murine developing kidney when Foxd1 is knocked out. RESULTS: We found that COL26A1, FBN2, EMILIN1, and TNC, interstitial ECM proteins that are transiently upregulated during development, had a similar distribution perinatally but then diverged in patterning in the adult. Abnormally clustered cortical vertical fibers and fused glomeruli were observed when Foxd1 was knocked out. The changes in the interstitial ECM of Foxd1 knockout kidneys corresponded to disrupted Foxd1+ cell patterning but did not precede branching dysmorphogenesis. CONCLUSIONS: The transient ECM networks affected by Foxd1 knockout may provide support for later-stage nephrogenic structures.


Assuntos
Fatores de Transcrição Forkhead , Rim , Animais , Camundongos , Matriz Extracelular/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA