Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.684
Filtrar
1.
Mater Today Bio ; 28: 101176, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39171099

RESUMO

The lack of accurate and reliable in vitro brain models hinders the development of brain science and research on brain diseases. Owing to the complex structure of the brain tissue and its highly nonlinear characteristics, the construction of brain-like in vitro tissue models remains one of the most challenging research fields in the construction of living tissues. This study proposes a multi-scale design of a brain-like model with a biomimetic cortical structure, which includes the macroscopic structural features of six layers of different cellular components, as well as micrometer-scale continuous fiber structures running through all layers vertically. To achieve integrated biomanufacturing of such a complex multi-scale brain-like model, a multi-material composite printing/culturing integrated bioprinting platform was developed in-house by integrating cell-laden hydrogel ink direct writing printing and electrohydrodynamic fiber 3D printing technologies. Through integrated bioprinting, multi-scale models with different cellular components and fiber structural parameters were prepared to study the effects of macroscopic and microscopic structural features on the directionality of neural cells, as well as the interaction between glial cells and neurons within the tissue model in a three-dimensional manner. The results revealed that the manufactured in vitro biomimetic cortical model achieved morphological connections between the layers of neurons, reflecting the structure and cellular morphology of the natural cortex. Micrometer-scale (10 µm) cross-layer fibers effectively guided and controlled the extension length and direction of the neurites of surrounding neural cells but had no significant effect on the migration of neurons. In contrast, glial cells significantly promoted the migration of surrounding PC12 cells towards the glial layer but did not contribute to the extension of neurites. This study provides a basis for the design and manufacture of accurate brain-like models for the functionalization of neuronal tissues.

2.
Methods Mol Biol ; 2831: 133-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134848

RESUMO

The molecular mechanisms underlying neurite formation include multiple crosstalk between pathways such as membrane trafficking, intracellular signaling, and actin cytoskeletal rearrangement. To study the proteins involved in such complex pathways, we present a detailed workflow of the sample preparation for mass spectrometry-based proteomics and data analysis. We have also included steps to perform label-free quantification of proteins that will help researchers quantify changes in the expression levels of key regulators of neuronal morphogenesis on a global scale.


Assuntos
Neuritos , Proteômica , Proteômica/métodos , Neuritos/metabolismo , Animais , Humanos , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteoma/análise , Cromatografia Líquida/métodos
3.
Methods Mol Biol ; 2831: 199-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134851

RESUMO

The use of time-lapse live imaging enables us to track the dynamic changes in neurites during their formation. Ex vivo live imaging with acute brain slices provides a more physiological environment than cultured cells. To accomplish this, a certain method of labeling is necessary to visualize and identify neurite morphology. To understand the dynamics of neurite structure at early stages of neurite formation, we describe in this chapter ex vivo live imaging using a confocal microscope at P0 in combination with in utero electroporation (IUE).


Assuntos
Encéfalo , Eletroporação , Neuritos , Animais , Eletroporação/métodos , Neuritos/metabolismo , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/diagnóstico por imagem , Camundongos , Feminino , Microscopia Confocal/métodos , Imagem com Lapso de Tempo/métodos , Gravidez , Neurogênese
4.
Methods Mol Biol ; 2831: 301-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134858

RESUMO

Isolation and culture of dorsal root ganglion (DRG) neurons from adult animals is a useful experimental system for evaluating neural plasticity after axonal injury, as well as the neurological dysfunction resulting from aging and various types of disease. In this chapter, we will introduce a detailed method for the culture of mature rat DRG neurons. About 30-40 ganglia are dissected from a rat and mechanically and enzymatically digested. Subsequently, density gradient centrifugation of the digested tissue using 30% Percoll efficiently eliminates myelin debris and non-neuronal cells, to afford neuronal cells with a high yield and purity.


Assuntos
Técnicas de Cultura de Células , Separação Celular , Gânglios Espinais , Regeneração Nervosa , Neurônios , Animais , Gânglios Espinais/citologia , Ratos , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Cultura de Células/métodos , Regeneração Nervosa/fisiologia , Separação Celular/métodos , Degeneração Neural/patologia , Células Cultivadas , Centrifugação com Gradiente de Concentração/métodos
5.
Phytochemistry ; : 114253, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168425

RESUMO

Cultivation and extraction of the fungus Stereum hirsutum (Willd.) Pers. yielded 12 isopentenyl benzene derivatives, including six previously undescribed derivatives, named stereuins A-F. Their structures were established based on NMR and mass spectroscopy analyses, supplemented by comparison with previously reported data. Stereuins A-C are unique benzoate derivatives containing fatty acid subunits. Stereuins D and E feature a valylene group and a 6/6/6 ring system. In vitro, stereuin A significantly promoted neurite outgrowth. Several compounds exhibited antibacterial activity against Staphylococcus aureus. Stereuin F has an IC50 value of 5.2 µg/mL against S. aureus, comparable to the positive control, penicillin G sodium (1.4 µg/mL).

6.
Neuroscience ; 555: 184-193, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094821

RESUMO

Oxytocin affects social recognition, interactions, and behavior in adults. Despite growing data on the role of oxytocin in the sensory systems, its effects on early olfactory system development remain poorly understood. The present study aimed to investigate the developmental impact of oxytocin on selected parameters of the GABAergic system in olfactory brain regions. We found a significant increase in the expression of GABAergic markers and scaffolding proteins in the olfactory bulb during the early stages of development in both male and female rats, regardless of oxytocin treatment administered on postnatal days 2 and 3 (P2 and P3, 5 µg/pup). Oxytocin administration markedly reduced the expression of the scaffolding protein Gephyrin in male rats and it led to a significant increase in the number of GABAergic synaptic puncta in the piriform cortex of male rats at P5, P7, and P9. Our data suggest that the developmental action of oxytocin in relation to the GABAergic system may represent a mechanism by which the plasticity and maturation of olfactory brain regions are regulated.


Assuntos
Neurônios GABAérgicos , Proteínas de Membrana , Bulbo Olfatório , Ocitocina , Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Feminino , Masculino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Ratos Wistar , Proteínas de Transporte/metabolismo , Ratos , Animais Recém-Nascidos , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
7.
Quant Imaging Med Surg ; 14(8): 5774-5788, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39144033

RESUMO

Background: Amyotrophic lateral sclerosis (ALS)-related white-matter microstructural abnormalities have received considerable attention; however, gray-matter structural abnormalities have not been fully elucidated. This study aimed to evaluate cortical microstructural abnormalities in ALS and determine their association with disease severity. Methods: This study included 34 patients with ALS and 30 healthy controls. Diffusion-weighted data were used to estimate neurite orientation dispersion and density imaging (NODDI) parameters, including neurite density index (NDI) and orientation dispersion index (ODI). We performed gray matter-based spatial statistics (GBSS) in a voxel-wise manner to determine the cortical microstructure difference. We used the revised ALS Functional Rating Scale (ALSFRS-R) to assess disease severity and conducted a correlation analysis between NODDI parameters and ALSFRS-R. Results: In patients with ALS, the NDI reduction involved several cortical regions [primarily the precentral gyrus, postcentral gyrus, temporal cortex, prefrontal cortex, occipital cortex, and posterior parietal cortex; family-wise error (FWE)-corrected P<0.05]. ODI decreased in relatively few cortical regions (including the precentral gyrus, postcentral gyrus, prefrontal cortex, and inferior parietal lobule; FWE-corrected P<0.05). The NDI value in the left precentral and postcentral gyrus was positively correlated with the ALS disease severity (FWE-corrected P<0.05). Conclusions: The decreases in NDI and ODI involved both motor-related and extra-motor regions and indicated the presence of gray-matter microstructural impairment in ALS. NODDI parameters are potential imaging biomarkers for evaluating disease severity in vivo. Our results showed that GBSS is a feasible method for identifying abnormalities in the cortical microstructure of patients with ALS.

8.
Front Cell Dev Biol ; 12: 1433947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144252

RESUMO

37/67 kDa laminin receptor (LamR)/ribosomal protein SA exhibits dual function as both a ribosomal protein and cell surface receptor for laminin. LamR influences critical cellular processes such as invasion, adhesion, and migration when acting as a receptor. Despite the acknowledged importance of LamR/67LR in various cellular processes, its contribution to the peripheral nervous system development is obscure. Thus, this study investigated the biological activity of LamR in peripheral axonal outgrowth in the presence of laminin-1 or Ile-Lys-Val-Ala-Val (IKVAV) peptide, whose important role in dorsal root ganglia (DRG) axonal outgrowth we recently showed. Unexpectedly, we did not observe LamR on the surface of DRG cells or in a conditioned medium, suggesting its intracellular action in the negative regulation of DRG axonal outgrowth. Using C-terminus LamR-targeting IgG, we demonstrated the role of LamR in that process, which is independent of the presence of Schwann cell precursors (SCPs) and is mediated by extracellular signal-regulated kinase (Erk) and Protein kinase B (Akt1/2/3) signaling pathways. Additionally, we show that the action of LamR towards laminin-1-dependent axonal outgrowth is unmasked only when the activity of integrin ß1 is perturbed. We believe that modulation of LamR activity provides the basis for its use for inhibiting axon growth as a potential therapeutic agent for regulating abnormal or excessive neurite growth during neurodevelopmental diseases or pathological nerve regeneration.

9.
Elife ; 132024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949652

RESUMO

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Assuntos
Caenorhabditis elegans , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Acetilação , Axônios/metabolismo , Axônios/fisiologia , Fosforilação , Regeneração Nervosa , Cinesinas/metabolismo , Cinesinas/genética
10.
Front Neurosci ; 18: 1425525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027325

RESUMO

The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.

11.
Neuron ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39019043

RESUMO

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

12.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071433

RESUMO

Background: Individuals with body dysmorphic disorder (BDD) perceive distortions in their appearance, which could be due to imbalances in global and local visual processing. The vertical occipital fasciculus connects dorsal and ventral visual stream regions, integrating global and local information, yet the role of this structural connection in BDD has not been explored. Here, we investigated the vertical occipital fasciculus's white matter microstructure in those with BDD and healthy controls and tested associations with psychometric measures and effective connectivity while viewing their face during fMRI. Methods: We analyzed diffusion MRI and fMRI data in 17 unmedicated adults with BDD and 21 healthy controls. For diffusion MRI, bundle-specific analysis was performed, enabling quantitative estimation of neurite density and orientation dispersion of the vertical occipital fasciculus. For task fMRI, participants naturalistically viewed photos of their own face, from which we computed effective connectivity from dorsal to ventral visual regions. Results: In BDD, neurite density was negatively correlated with appearance dissatisfaction and negatively correlated with effective connectivity. Further, those with weaker effective connectivity while viewing their face had worse BDD symptoms and worse insight. In controls, no significant relationships were found between any of the measures. There were no significant group differences in neurite density or orientation dispersion. Conclusion: Those with BDD with worse appearance dissatisfaction have a lower fraction of tissue having axons or dendrites along the vertical occipital fasciculus bundle, possibly reflecting impacting the degree of integration of global and local visual information between the dorsal and ventral visual streams. These results provide early insights into how the vertical occipital fasciculus's microstructure relates to the subjective experience of one's appearance, as well as the possibility of distinct functional-structural relationships in BDD.

13.
Alzheimers Dement (Amst) ; 16(3): e12627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077685

RESUMO

INTRODUCTION: Age-related and Alzheimer's disease (AD) dementia-related neurodegeneration impact brain health. While morphometric measures from T1-weighted scans are established biomarkers, they may be less sensitive to earlier changes. Neurite orientation dispersion and density imaging (NODDI), offering biologically meaningful interpretation of tissue microstructure, may be an advanced brain health biomarker. METHODS: We contrasted regional gray matter NODDI and morphometric evaluations concerning their correlation with (1) age, (2) clinical diagnosis stage, and (3) tau pathology as assessed by AV1451 positron emission tomography. RESULTS: Our study hypothesizes that NODDI measures are more sensitive to aging and early AD changes than morphometric measures. One NODDI output, free water fraction (FWF), showed higher sensitivity to age-related changes, generally better effect sizes in separating mild cognitively impaired from cognitively unimpaired participants, and stronger associations with regional tau deposition than morphometric measures. DISCUSSION: These findings underscore NODDI's utility in capturing early neurodegenerative changes and enhancing our understanding of aging and AD. Highlights: Neurite orientation dispersion and density imaging can serve as an effective brain health biomarker for aging and early Alzheimer's disease (AD).Free water fraction has higher sensitivity to normal brain aging.Free water fraction has stronger associations with early AD and regional tau deposition.

14.
J Headache Pain ; 25(1): 110, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977951

RESUMO

BACKGROUND: New daily persistent headache (NDPH) is a rare primary headache with unclear pathogenesis. Neuroimaging studies of NDPH are limited, and controversy still exists. Diffusion tensor imaging (DTI) is commonly used to study the white matter. However, lacking specificity, the potential pathological mechanisms of white matter microstructural changes remain poorly understood. In addition, the intricacy of gray matter structures impedes the application of the DTI model. Here, we applied an advanced diffusion model of neurite orientation dispersion and density imaging (NODDI) to study the white matter and cortical gray matter microstructure in patients with NDPH. METHODS: This study assessed brain microstructure, including 27 patients with NDPH, and matched 28 healthy controls (HCs) by NODDI. The differences between the two groups were assessed by tract-based spatial statistics (TBSS) and surface-based analysis (SBA), focusing on the NODDI metrics (neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF)). Furthermore, we performed Pearson's correlation analysis between the NODDI indicators and clinical characteristics. RESULTS: Compared to HCs, patients with NDPH had a reduction of density and complexity in several fiber tracts. For robust results, the fiber tracts were defined as comprising more than 100 voxels, including bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), as well as right corticospinal tract (CST). Moreover, the reduction of neurite density was uncovered in the left superior and middle frontal cortex, left precentral cortex, and right lateral orbitofrontal cortex and insula. There was no correlation between the NODDI metrics of these brain regions and clinical variables or scales of relevance after the Bonferroni correction. CONCLUSIONS: Our research indicated that neurite loss was detected in both white matter and cortical gray matter of patients with NDPH.


Assuntos
Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Transtornos da Cefaleia/diagnóstico por imagem , Transtornos da Cefaleia/patologia , Neuritos/patologia
15.
Brain Res ; 1841: 149114, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977237

RESUMO

OBJECTIVES: Previous studies have shown that microstructural alterations in white matter (WM) could contribute to the symptom manifestation and support the dysconnectivity hypothesis in schizophrenia patients. These alterations were pervasive, non-specific, and reported inconsistently across the literature. This study aimed to specifically investigate the microstructure alterations of the posterior limb of the internal capsule (PLIC) in first-episode, drug-naive schizophrenia patients. Utilizing a multicompartmental biophysical model, we further explored the correlation between these alterations and syndrome scale scores. METHODS: Thirty-two individuals with first-episode, drug-naive schizophrenia (FES) and thirty demographically matched healthy controls were enrolled. High-resolution multi-shell diffusion MRI data were collected, followed by the application of a three-compartment Neurite Orientation Dispersion and Density Imaging (NODDI) model to scrutinize the alterations in white matter microstructure. Changes in sensory and motor fibers within the PLIC were specifically focused on. Additionally, the correlation between these pathological changes and scores on the Positive and Negative Syndrome Scale (PANSS) was investigated. RESULTS: The Neurite density index (NDI) in the left PLIC was significantly lower in FES patients compared to healthy individuals, and positively correlated with PANSS positive syndrome scores (r = 0.0379, p = 0.046). In the sensory component (left superior thalamic radiation within PLIC, STR_P), the NDI was significantly elevated (p < 0.0001). Conversely, the NDI in the motor component (left corticospinal tract within PLIC, CST_P) was reduced (p = 0.007) in FES patients compared to healthy individuals, and strongly correlated with PANSS positive syndrome scores (p < 0.020) and PANSS total scores (p < 0.045). Moreover, the NDI deviation of STR from total PLIC (fSTR_P) and NDI deviation in STR_P and CST_P compared to PLIC region (fPLIC) were significantly higher in FES patients than in healthy controls (p < 0.00001), with an area under the curve (AUC) of fPLIC reaching 0.872. CONCLUSION: The study's findings provided new insights into the discrepancy of white matter microstructure changes associated with the sensory and motor fibers in the PLIC region in FES patients. These results contribute to the growing body of evidence suggesting that WM microstructural alterations play a critical role in schizophrenia pathophysiology.


Assuntos
Cápsula Interna , Esquizofrenia , Substância Branca , Humanos , Esquizofrenia/patologia , Esquizofrenia/diagnóstico por imagem , Cápsula Interna/patologia , Cápsula Interna/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Masculino , Adulto , Adulto Jovem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos
16.
Proc Natl Acad Sci U S A ; 121(29): e2321408121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976730

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker ß-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington's disease and spinocerebellar ataxias.


Assuntos
Neuritos , Receptores Androgênicos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Neuritos/metabolismo , Ratos , Células PC12 , Senescência Celular , Peptídeos/metabolismo , Humanos , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Mutação , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia
17.
J Biol Chem ; 300(8): 107537, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971314

RESUMO

Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.

18.
Brain Commun ; 6(3): fcae182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894951

RESUMO

Neurodegeneration in the autoimmune disease multiple sclerosis still poses a major therapeutic challenge. Effective drugs that target the inflammation can only partially reduce accumulation of neurological deficits and conversion to progressive disease forms. Diet and the associated gut microbiome are currently being discussed as crucial environmental risk factors that determine disease onset and subsequent progression. In people with multiple sclerosis, supplementation of the short-chain fatty acid propionic acid, as a microbial metabolite derived from the fermentation of a high-fiber diet, has previously been shown to regulate inflammation accompanied by neuroprotective properties. We set out to determine whether the neuroprotective impact of propionic acid is a direct mode of action of short-chain fatty acids on CNS neurons. We analysed neurite recovery in the presence of the short-chain fatty acid propionic acid and butyric acid in a reverse-translational disease-in-a-dish model of human-induced primary neurons differentiated from people with multiple sclerosis-derived induced pluripotent stem cells. We found that recovery of damaged neurites is induced by propionic acid and butyric acid. We could also show that administration of butyric acid is able to enhance propionic acid-associated neurite recovery. Whole-cell proteome analysis of induced primary neurons following recovery in the presence of propionic acid revealed abundant changes of protein groups that are associated with the chromatin assembly, translational, and metabolic processes. We further present evidence that these alterations in the chromatin assembly were associated with inhibition of histone deacetylase class I/II following both propionic acid and butyric acid treatment, mediated by free fatty acid receptor signalling. While neurite recovery in the presence of propionic acid is promoted by activation of the anti-oxidative response, administration of butyric acid increases neuronal ATP synthesis in people with multiple sclerosis-specific induced primary neurons.

19.
Biomolecules ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927091

RESUMO

BACKGROUND: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). METHODS: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone). RESULTS: Antipsychotics did not modify the growth properties of NPCs after 3 days of treatment. However, the characteristics of neurite outgrowth changed significantly in response to haloperidol and olanzapine. After three weeks of differentiation, mRNA expression levels of the selected neuronal markers increased (except for MAP2), while antipsychotics caused only subtle changes. Additionally, we found no changes in MAP2 or GFAP protein expression levels as a result of antipsychotic treatment. CONCLUSIONS: Altogether, antipsychotic medications promoted neurogenesis in vitro by influencing neurite outgrowth rather than changing cell survival or gene expression. This study provides insights into the effects of antipsychotics on neuronal differentiation and highlights the importance of considering neurite outgrowth as a potential target of action.


Assuntos
Antipsicóticos , Diferenciação Celular , Haloperidol , Hipocampo , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Neurogênese , Olanzapina , Risperidona , Humanos , Olanzapina/farmacologia , Risperidona/farmacologia , Neurogênese/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Haloperidol/farmacologia , Antipsicóticos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Crescimento Neuronal/efeitos dos fármacos
20.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838666

RESUMO

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Adenosina , Núcleo Celular , Neurogênese , Neurônios , Proteína I de Ligação a Poli(A) , RNA Circular , RNA , RNA Circular/metabolismo , RNA Circular/genética , Neurônios/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Animais , RNA/metabolismo , RNA/genética , Linhagem Celular , Diferenciação Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA