Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15407, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965251

RESUMO

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Assuntos
Comunicação Autócrina , Pressão Sanguínea , AMP Cíclico , Oligopeptídeos , Transdução de Sinais , Animais , Humanos , Camundongos , AMP Cíclico/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Rim/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo
2.
Acta Neuropathol Commun ; 12(1): 108, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943180

RESUMO

We quantified and determined for the first time the distribution pattern of the neuropeptide NPFF in the human cerebral cortex and subjacent white matter. To do so, we studied n = 9 cases without neurological disorders and n = 22 cases with neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (ALS, n = 8), Alzheimer's disease (AD, n = 8), Pick's disease (PiD, n = 3), and schizophrenia (n = 3). NPFF-immunopositive cells were located chiefly, but not exclusively, in the superficial white matter and constituted there a subpopulation of white matter interstitial cells (WMIC): Pyramidal-like and multipolar somata predominated in the gyral crowns, whereas bipolar and ovoid somata predominated in the cortex surrounding the sulci. Their sparsely ramified axons were unmyelinated and exhibited NPFF-positive bead-like varicosities. We found significantly fewer NPFF-immunopositive cells in the gray matter of the frontal, cingulate, and superior temporal gyri of both sporadic ALS and late-stage AD patients than in controls, and significantly fewer NPFF-positive cells in the subjacent as well as deep white matter of the frontal gyrus of these patients compared to controls. Notably, the number of NPFF-positive cells was also significantly lower in the hippocampal formation in AD compared to controls. In PiD, NPFF-positive cells were present in significantly lower numbers in the gray and white matter of the cingulate and frontal gyrii in comparison to controls. In schizophrenic patients, lower wNPFF cell counts in the neocortex were significant and global (cingulate, frontal, superior temporal gyrus, medial, and inferior gyri). The precise functions of NPFF-positive cells and their relationship to the superficial corticocortical white matter U-fibers are currently unknown. Here, NPFF immunohistochemistry and expression characterize a previously unrecognized population of cells in the human brain, thereby providing a new entry-point for investigating their physiological and pathophysiological roles.


Assuntos
Córtex Cerebral , Doenças Neurodegenerativas , Esquizofrenia , Substância Branca , Humanos , Substância Branca/patologia , Substância Branca/metabolismo , Masculino , Esquizofrenia/patologia , Esquizofrenia/metabolismo , Feminino , Córtex Cerebral/patologia , Córtex Cerebral/metabolismo , Idoso , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo , Idoso de 80 Anos ou mais , Oligopeptídeos , Adulto , Neurônios/patologia , Neurônios/metabolismo
3.
Eur J Med Chem ; 269: 116330, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522114

RESUMO

The Neuropeptide FF (NPFF) receptor system is known to modulate opioid actions and has been shown to mediate opioid-induced hyperalgesia and tolerance. The lack of subtype selective small molecule compounds has hampered further exploration of the pharmacology of this receptor system. The vast majority of available NPFF ligands possess a highly basic guanidine group, including our lead small molecule, MES304. Despite providing strong receptor binding, the guanidine group presents a potential pharmacokinetic liability for in vivo pharmacological tool development. Through structure-activity relationship exploration, we were able to modify our lead molecule MES304 to arrive at guanidine-free NPFF ligands. The novel piperidine analogues 8b and 16a are among the few non-guanidine based NPFF ligands known in literature. Both compounds displayed nanomolar NPFF-R binding affinity approaching that of the parent molecule. Moreover, while MES304 was non-subtype selective, these two analogues presented new starting points for subtype selective scaffolds, whereby 8b displayed a 15-fold preference for NPFF1-R, and 16a demonstrated an 8-fold preference for NPFF2-R. Both analogues showed no agonist activity on either receptor subtype in the in vitro functional activity assay, while 8b displayed antagonistic properties at NPFF1-R. The calculated physicochemical properties of 8b and 16a were also shown to be more favorable for in vivo tool design. These results indicate the possibility of developing potent, subtype selective NPFF ligands devoid of a guanidine functionality.


Assuntos
Analgésicos Opioides , Guanidinas , Oligopeptídeos , Analgésicos Opioides/farmacologia , Guanidina/farmacologia , Ligantes , Piperidinas/farmacologia
4.
Eur J Pharmacol ; 969: 176457, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395375

RESUMO

Neuropeptide FF (NPFF) plays a critical role in various physiological processes through the activation of neuropeptide FF receptor 1 and 2 (NPFFR1 and NPFFR2). Numerous evidence has indicated that NPFF exhibits opposite opioid-modulating effects on opioid-induced analgesia after supraspinal and spinal administrations, while the detailed role of NPFFR1 and NPFFR2 remains unclear. In this study, we employed pharmacological and genetic inhibition of NPFFR to investigate the modulating roles of central NPFFR1 and NPFFR2 in opioid-induced analgesia and hyperalgesia, using a male mouse model of acute fentanyl-induced analgesia and secondary hyperalgesia. Our findings revealed that intrathecal (i.t.) injection of the nonselective NPFFR antagonist RF9 significantly enhanced fentanyl-induced analgesia, whereas intracerebroventricular (i.c.v.) injection did not show the same effect. Moreover, NPFFR2 deficient (npffr2-/-) mice exhibited stronger analgesic responses to fentanyl compared to wild type (WT) or NPFFR1 knockout (npffr1-/-) mice. Intrathecal injection of RF9 in npffr1-/- mice also significantly enhanced fentanyl-induced analgesia. These results indicate a crucial role of spinal NPFFR2 in the enhancement of opioid analgesia. Contrastingly, hyperalgesia induced by fentanyl was markedly reversed in npffr1-/- mice but remained unaffected in npffr2-/- mice. Similarly, i.c.v. injection of the selective NPFFR1 antagonist RF3286 effectively prevented fentanyl-induced hyperalgesia in WT or npffr2-/- mice. Notably, co-administration of i.c.v. RF3286 and i.t. RF9 augmented fentanyl-induced analgesia while reducing hyperalgesia. Collectively, these findings highlight the modulating effects of blocking spinal NPFFR2 and supraspinal NPFFR1 on fentanyl-induced analgesia and hyperalgesia, respectively, which shed a light on understanding the pharmacological function of NPFF system in future studies.


Assuntos
Analgesia , Hiperalgesia , Camundongos , Masculino , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Dor , Receptores de Neuropeptídeos/genética
5.
Clin Nutr ; 43(3): 603-619, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301284

RESUMO

BACKGROUND: The hypothalamus is a crucial brain region that mediates the effects of insulin and leptin signals on peripheral metabolic functions. Previous research has shown that insulin signals in the hypothalamus act via multiple neuronal circuits and anabolic/catabolic pathways that converge on the vagus nerve and sympathetic fibers to coordinate energy metabolism in peripheral organs. Additionally, neuropeptide FF (NPFF) has been identified as a regulator of feeding behaviors and energy homeostasis in the hypothalamus, but the mechanisms underlying its involvement in metabolic control remain unclear. This study aims to explore the underlying mechanisms of NPFF in modulating metabolic disorders. METHODS: In this study, we investigated the physiological role of NPFF in insulin-related energy homeostasis and metabolic health. First, we evaluated the effects of NPFF and its receptors on central insulin signaling using mouse hypothalamic cell lines and Npffr2-overexpressing mice. To further explore the effects of NPFFR2 on insulin-related metabolic disorders, such as diabetes mellitus, we used Npffr2-deleted mice in combination with the streptozotocin (STZ)-induced type 1 diabetes and high-fat diet/STZ-induced type 2 diabetic mouse models. The impacts of central NPFFR2 were demonstrated specifically through Npffr2 overexpression in the hypothalamic arcuate nucleus, which subsequently induced type 2 diabetes. RESULTS: We found that stimulating NPFFR2 in the hypothalamus blocked hypothalamic insulin activity. Npffr2 deletion improved central and peripheral metabolic symptoms in both mouse models of diabetes mellitus, exerting effects on central and systemic insulin resistance, feeding behaviors, glucose and insulin intolerance, lipid metabolism, liver steatosis, and inflammation of white adipose tissues. The overexpression of ARC Npffr2 augmented the metabolic dysregulation in the mouse model of type 2 diabetes. CONCLUSIONS: Our findings demonstrate that hypothalamic NPFFR2 negatively regulates insulin signaling in the central nervous system and plays an important role in maintaining systemic metabolic health, thereby providing valuable insights for potential clinical interventions targeting these health challenges.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Insulina , Diabetes Mellitus Tipo 2/genética , Hipotálamo , Homeostase , Modelos Animais de Doenças
6.
Peptides ; 174: 171164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272240

RESUMO

Neuropeptide FF (NPFF) is an octapeptide that regulates various cellular processes, especially pain perception. Recently, there has been a growing interest in understanding the modulation of NPFF in neuroendocrine inflammation. This review aims to provide a thorough overview of the regulation of NPFF in macrophage-mediated biological processes. We delve into the impact of NPFF on macrophage polarization, self-renewal modulation, and the promotion of mitophagy, facilitating the transition from thermogenic fat to fat-storing adipose tissue. Additionally, we explore the NPFF-dependent regulation of the inflammatory response mediated by macrophages, its impact on the differentiation of macrophages, and its capacity to induce alterations in the transcriptome of macrophages. We also address the potential of NPFF as a therapeutic molecule in the field of neuroendocrine inflammation. Overall, our work offers an understanding of the influence of NPFF on macrophage, facilitating the exploration of its pharmacological significance in future studies.


Assuntos
Oligopeptídeos , Receptores de Neuropeptídeos , Humanos , Oligopeptídeos/farmacologia , Macrófagos , Inflamação
7.
Immunity ; 57(2): 333-348.e6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38295799

RESUMO

The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.


Assuntos
Infecções Bacterianas , Neuropeptídeos , Humanos , Receptores de Neuropeptídeos/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios
8.
Exp Cell Res ; 430(1): 113693, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392963

RESUMO

Neuropeptide FF (NPFF) belongs to the RFamide peptide family. NPFF regulates a variety of physiological functions by binding to a G protein-coupled receptor (GPCR), NPFFR2. Epithelial ovarian cancer (EOC) is a leading cause of death among gynecological malignancies. The pathogenesis of EOC can be regulated by many local factors, including neuropeptides, through an autocrine/paracrine manner. However, to date, the expression and/or function of NPFF/NPFFR2 in EOC is undetermined. In this study, we show that the upregulation of NPFFR2 mRNA was associated with poor overall survival in EOC. The TaqMan probe-based RT-qPCR showed that NPFF and NPFFR2 were expressed in three human EOC cells, CaOV3, OVCAR3, and SKOV3. In comparison, NPFF and NPFFR2 expression levels were higher in SKOV3 cells than in CaOV3 or OVCAR3 cells. Treatment of SKOV3 cells with NPFF did not affect cell viability and proliferation but stimulated cell invasion. NPFF treatment upregulates matrix metalloproteinase-9 (MMP-9) expression. Using the siRNA-mediated knockdown approach, we showed that the stimulatory effect of NPFF on MMP-9 expression was mediated by the NPFFR2. Our results also showed that ERK1/2 signaling was activated in SKOV3 cells in response to the NPFF treatment. In addition, blocking the activation of ERK1/2 signaling abolished the NPFF-induced MMP-9 expression and cell invasion. This study provides evidence that NPFF stimulates EOC cell invasion by upregulating MMP-9 expression through the NPFFR2-mediated ERK1/2 signaling pathway.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Metaloproteinase 9 da Matriz/genética , Apoptose , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Transdução de Sinais , Invasividade Neoplásica
9.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403228

RESUMO

The RF-amide peptides comprise a family of neuropeptides that includes the kisspeptin (Kp), the natural ligand of kisspeptin receptor (Kiss1r), and the RFamide-related peptide 3 (RFRP-3) that binds preferentially to the neuropeptide FF receptor 1 (Npffr1). Kp stimulates prolactin (PRL) secretion through the inhibition of tuberoinfundibular dopaminergic (TIDA) neurons. Because Kp also has affinity to Npffr1, we investigated the role of Npffr1 in the control of PRL secretion by Kp and RFRP-3. Intracerebroventricular (ICV) injection of Kp increased PRL and LH secretion in ovariectomized, estradiol-treated rats. The unselective Npffr1 antagonist RF9 prevented these responses, whereas the selective antagonist GJ14 altered PRL but not LH levels. The ICV injection of RFRP-3 in ovariectomized, estradiol-treated rats increased PRL secretion, which was associated with a rise in the dopaminergic activity in the median eminence, but had no effect on LH levels. The RFRP-3-induced increase in PRL secretion was prevented by GJ14. Moreover, the estradiol-induced PRL surge in female rats was blunted by GJ14, along with an amplification of the LH surge. Nevertheless, whole-cell patch clamp recordings showed no effect of RFRP-3 on the electrical activity of TIDA neurons in dopamine transporter-Cre recombinase transgenic female mice. We provide evidence that RFRP-3 binds to Npffr1 to stimulate PRL release, which plays a role in the estradiol-induced PRL surge. This effect of RFRP-3 is apparently not mediated by a reduction in the inhibitory tone of TIDA neurons but possibly involves the activation of a hypothalamic PRL-releasing factor.


Assuntos
Neuropeptídeos , Prolactina , Camundongos , Ratos , Feminino , Animais , Humanos , Prolactina/farmacologia , Prolactina/metabolismo , Kisspeptinas , Estradiol/farmacologia , Ovariectomia
10.
Clin Sci (Lond) ; 137(10): 847-862, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191311

RESUMO

A previous study on neuropeptide FF receptor 2 (NPFFR2)-deficient mice has demonstrated that NPFFR2 is involved in the control of energy balance and thermogenesis. Here, we report on the metabolic impact of NPFFR2 deficiency in male and female mice that were fed either a standard diet (STD) or a high-fat diet (HFD) and each experimental group consisted of ten individuals. Both male and female NPFFR2 knockout (KO) mice exhibited severe glucose intolerance that was exacerbated by a HFD diet. In addition, reduced insulin pathway signaling proteins in NPFFR2 KO mice fed a HFD resulted in the development of hypothalamic insulin resistance. HFD feeding did not cause liver steatosis in NPFFR2 KO mice of either sex, but NPFFR2 KO male mice fed a HFD had lower body weights, white adipose tissues, and liver and lower plasma leptin levels compared with their wild-type (WT) controls. Lower liver weight in NPFFR2 KO male mice compensated for HFD-induced metabolic stress by increased liver PPARα and plasma FGF21 hepatokine, which supported fatty acid ß-oxidation in the liver and white adipose tissue. Conversely, NPFFR2 deletion in female mice attenuated the expression of Adra3ß and Pparγ, which inhibited lipolysis in adipose tissue.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo
11.
Neuropeptides ; 97: 102309, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410163

RESUMO

The chimeric peptide EN-9 was reported as a κ-opioid/neuropeptide FF receptors bifunctional agonist that modulated chronic pain with no tolerance. Many lines of evidence have shown that the effect of the κ-opioid receptor is mediated by not only its specific activation but also downstream events participation, especially interaction with the µ-opioid receptor pathway in antinociception and tolerance on most occasions. The present study investigated the acute and chronic cross-tolerance of EN-9 with µ-opioid receptor agonist EM-2, DAMGO, and morphine after intracerebroventricularly (i.c.v) injection in the mouse tail-flick test. In the acute tolerance test, EN-9 showed symmetrical acute cross-tolerance to DAMGO but no cross-tolerance to EM2. In the chronic tolerance test, EN-9 had no tolerance after eight days of repeated administration. However, EN-9 illustrated complete cross-tolerance to morphine and symmetrical cross-tolerance to EM2. In addition, inhibition of NPFF receptor could induce the tolerance development of EN-9. These findings indicated that supraspinal EN-9-induced antinociception contains additional components, which are mediated by the downstream µ-opioid receptor pathway both in acute and chronic treatment, whereas the subtypes of µ-opioid receptor or NPFF system pathway involved in antinociceptive effects induced by EN-9 are complex. Identifying the receptor mechanism could help design preferable bifunctional opioid compounds.


Assuntos
Analgésicos Opioides , Analgésicos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Analgésicos/farmacologia , Receptores Opioides mu/metabolismo , Morfina/farmacologia
12.
Molecules ; 27(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36557917

RESUMO

There is still an unmet clinical need to develop new pharmaceuticals for effective and safe pain management. Current pharmacotherapy offers unsatisfactory solutions due to serious side effects related to the chronic use of opioid drugs. Prescription opioids produce analgesia through activation of the mu-opioid receptor (MOR) and are major contributors to the current opioid crisis. Multifunctional ligands possessing activity at more than one receptor represent a prominent therapeutic approach for the treatment of pain with fewer adverse effects. We recently reported on the design of a bifunctional MOR agonist/neuropeptide FF receptor (NPFFR) antagonist peptididomimetic, KGFF09 (H-Dmt-DArg-Aba-ßAla-Bpa-Phe-NH2), and its antinociceptive effects after subcutaneous (s.c.) administration in acute and persistent pain in mice with reduced propensity for unwanted side effects. In this study, we further investigated the antinociceptive properties of KGFF09 in a mouse model of visceral pain after s.c. administration and the potential for opioid-related liabilities of rewarding and sedation/locomotor dysfunction following chronic treatment. KGFF09 produced a significant dose-dependent inhibition of the writhing behavior in the acetic acid-induced writhing assay with increased potency when compared to morphine. We also demonstrated the absence of harmful effects caused by typical MOR agonists, i.e., rewarding effects (conditioned-place preference test) and sedation/locomotor impairment (open-field test), at a dose shown to be highly effective in inhibiting pain behavior. Consequently, KGFF09 displayed a favorable benefit/side effect ratio regarding these opioid-related side effects compared to conventional opioid analgesics, such as morphine, underlining the development of dual MOR agonists/NPFFR antagonists as improved treatments for various pain conditions.


Assuntos
Peptidomiméticos , Dor Visceral , Camundongos , Animais , Analgésicos Opioides , Peptidomiméticos/farmacologia , Dor Visceral/tratamento farmacológico , Dor Visceral/induzido quimicamente , Morfina/farmacologia , Receptores Opioides mu/metabolismo , Proteínas de Ligação ao GTP
13.
Proc Natl Acad Sci U S A ; 119(46): e2209353119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343231

RESUMO

Testicular morphogenesis and functions are considered to be under the control of neural and endocrine systems. However, the available literature is mainly limited to mammals, and it remains unclear how they are regulated in teleost species. Here, we demonstrated that neuropeptide FF (NPFF) in the brain is responsible for the follicle-stimulating hormone expression in the pituitary, which facilitates the testicular morphogenesis and androgen synthesis, and subsequently contributes to successful spermatogenesis. The present findings give us important insights into the neuroendocrine regulatory mechanisms underlying the testicular morphogenesis and functions in teleosts.


Assuntos
Oryzias , Animais , Masculino , Oryzias/metabolismo , Testículo/metabolismo , Oligopeptídeos/metabolismo , Hormônio Foliculoestimulante , Mamíferos/metabolismo , Morfogênese
14.
ACS Chem Neurosci ; 13(21): 3078-3092, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36262082

RESUMO

Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through in vitro cyclic adenosine monophosphate (cAMP) functional assays and in vivo behavioral experiments. OFP011 exhibited multifunctional agonistic effects at the µ-opioid and the NPFF1 and NPFF2 receptors and partial agonistic effects at the δ- and κ-opioid in vitro, as determined via the cAMP functional assays. Pharmacokinetic and pharmacological experiments revealed improvement in its blood-brain barrier permeability after systemic administration. In addition, subcutaneous OFP011 exhibited potent and long-lasting antinociceptive activity via the central µ- and κ-opioid receptors, as observed in different physiological and pathological pain models. At the highest antinociceptive doses, subcutaneous OFP011 exhibited limited tolerance, gastrointestinal transit, motor coordination, addiction, reward, and respiration depression. Notably, OFP011 exhibited potent oral antinociceptive activities in mouse models of acute, inflammatory, and neuropathic pain. These results suggest that the multifunctional opioid/NPFF receptor agonists with improved blood-brain barrier penetration are a promising strategy for long-term treatment of moderate to severe nociceptive and pathological pain with fewer side effects.


Assuntos
Analgésicos Opioides , Peptídeos Cíclicos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/uso terapêutico , Barreira Hematoencefálica , Receptores de Neuropeptídeos , Dor/tratamento farmacológico , Receptores Opioides mu/agonistas
15.
Mol Metab ; 62: 101525, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691527

RESUMO

OBJECTIVE: Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons. METHODS: We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons. RESULTS: Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control. CONCLUSIONS: NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Oligopeptídeos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Insulinas/metabolismo , Camundongos , Oligopeptídeos/metabolismo
16.
Mol Biol Rep ; 49(7): 6385-6394, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35503491

RESUMO

BACKGROUND: Neuropeptide FF (NPFF), an octapeptide of the RFamide-related peptides (FaRPs), is involved in regulatory function in various biological processes. The regulatory role of NPFF in the immune and inflammatory response was currently being revealed. METHODS: Neuropeptide FF-related gene (termed LpNPFF) and its two receptors, NPFF receptor 1 (LpNPFFR1) and NPFF receptor 2 (LpNPFFR2) were identified by PCR and Semi-quantitative RT-PCR assay. Effect of LpNPFF on the production of nitric oxide (NO) in macrophage RAW264.7 cell was divided into PBS group, lipopolysaccharide (LPS) group, LPS treated with LpNPFF group, and LPS treated with LpNPFF and receptor antagonist RF9 group. Then specimens were measured by color reaction at 570 nm absorbance value. RESULTS: Sequence analysis showed that LpNPFF cDNA consists of 835 nucleotides with a 5'- untranslated region (UTR) of 150 base pair (bp), an open reading frame (ORF) of 384 bp and a 3'-UTR of 300 bp (Accession No. MT012894). The ORF encodes 127 amino acid (aa) residues with a hydrophobic signal peptide at N-terminus and two presumptive peptides with -PQRFa structure, LpNPFF (1) and LpNPFF (2). LpNPFFR1 and LpNPFFR2 encode 427 and 444 aa residues respectively, which both have seven hydrophobic TMDs and identified as G protein coupled receptors (GPCRs). Results of tissue distribution showed that LpNPFF and receptors were highly expressed in the brain and gonad. Furtherly, in vitro assay found LpNPFF could inhibit NO production in RAW 264.7 macrophages under inflammatory stress with LPS, while its receptor antagonist RF9 caused the evoke of NO generation. CONCLUSIONS: These results contribute to the further study of neuropeptide evolution in marine organisms, and also provide a new research idea for exploring the related functions of NPFF gene.


Assuntos
Lipopolissacarídeos , Receptores de Neuropeptídeos , Animais , Anti-Inflamatórios , Lipopolissacarídeos/farmacologia , Óxido Nítrico , Oligopeptídeos/farmacologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
17.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328681

RESUMO

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.


Assuntos
Neuropeptídeo Y , Oligopeptídeos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Humanos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Obesidade/metabolismo , Oligopeptídeos/farmacologia
18.
FASEB J ; 35(11): e21980, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694651

RESUMO

Although best known for their involvement in modulating nociception, Neuropeptide FF (NPFF) group peptides have been suggested to fulfil a variety of biological functions such as feeding, anxiety behaviors and thermogenesis. However, evidence supporting these functions of NPFF is mostly pharmacological, leaving the physiological relevance unaddressed. Here we examined the physiological impact of lack of NPFF signalling in both genders using a Npff-/- mouse model. NPFF expression in the mouse is restricted to the spinal cord and brainstem while its cognate receptor NPFFR2 has wider distribution throughout the brain. Both male and female Npff-/- mice showed reduced repetitive behaviors evidenced in the marble burying test and self-grooming test. A decrease in anxiety-related behaviors in the Npff-/- mice was also observe in the open field test and to a lesser degree in an elevated plus maze test. Moreover, both male and female Npff-/- mice exhibited increased water intake resulting from increases in drinking size, rather than number of drinking events. During a fasting-refeeding challenge, Npff-/- mice of both genders displayed alterations in reparatory exchange ratio that reflect a greater fuel type flexibility. Npff-/- mice were otherwise wild-type-like regarding body weight, body composition, feeding behaviors, locomotion or energy expenditure. Together, these findings reveal the important physiological roles of NPFF signalling in the regulation of anxiety-related and repetitive behaviors, fluid homeostasis and oxidative fuel selection, highlighting the therapeutical potential of the NPFF system in a number of behavioral and metabolic disorders.


Assuntos
Ansiedade/metabolismo , Comportamento de Ingestão de Líquido , Oligopeptídeos/fisiologia , Receptores de Neuropeptídeos/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Knockout
19.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445614

RESUMO

The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.


Assuntos
Cálcio/metabolismo , Lipoilação , Hormônio Liberador de Prolactina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Técnicas In Vitro , Hormônio Liberador de Prolactina/química , Hormônio Liberador de Prolactina/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética
20.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299230

RESUMO

The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.


Assuntos
Depressão/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Neuropeptídeos/genética , Animais , Comportamento Animal/fisiologia , Depressão/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/genética , Receptores de Neuropeptídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA