Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1253964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173719

RESUMO

As a component of the innate immune system, there is emerging evidence to suggest that neutrophils may play a critical role in the initiation and progression of hepatocellular carcinoma (HCC). Neutrophil extracellular traps (NETs) are web-like chromatin structures that protrude from the membranes during neutrophil activation. Recent research has shown that NETs, which are at the forefront of the renewed interest in neutrophil studies, are increasingly intertwined with HCC. By exploring the mechanisms of NETs in HCC, we aim to improve our understanding of the role of NETs and gain deeper insights into neutrophil biology. Therefore, this article provides a summary of key findings and discusses the emerging field of NETs in HCC.


Assuntos
Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neutrófilos
2.
Perfusion ; 37(2): 134-143, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475044

RESUMO

INTRODUCTION: Due to improved technology and increased application the mortality during extracorporeal membrane oxygenation (ECMO) is constantly declining. Nevertheless, complications including haemorrhage or thrombus formation remain frequent. Local mitigation of coagulation within an ECMO system to prevent thrombus formation on ECMO components and optimizing systemic anticoagulation is an approach to reduce clotting and bleeding complications at once. Foreign surfaces of ECMO systems, activate platelets (PLTs), which besides their major role in coagulation, can trigger the formation of neutrophil extracellular traps (NETs) contributing to robust thrombus formation. The impact of a reduced PLT count on PLT activation and NET formation is of paramount importance and worth investigating. METHODS: In this study platelet poor (PLT-) and native (PLT+) heparinized human blood was circulated in two identical in vitro test circuits for ECMO devices for 6 hours. PLT reduction was achieved by a centrifugation protocol prior to the experiments. To achieve native coagulation characteristics within the test circuits, the initial heparin dose was antagonized by continuous protamine administration. RESULTS: The PLT- group showed significantly lower platelet activation, basal NET formation and limited clot stability measured via thromboelastometry. Fluorescent and scanning electron microscope imaging showed differences in clot composition. Both groups showed equal clot formation within the circuit. CONCLUSIONS: This study demonstrated that the reduction of PLTs within an ECMO system is associated with limited PLT activation and NET formation, which reduces clot stability but is not sufficient to inhibit clot formation per se.


Assuntos
Armadilhas Extracelulares , Trombose , Coagulação Sanguínea/fisiologia , Humanos , Ativação Plaquetária , Contagem de Plaquetas
3.
Biomedicines ; 8(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784433

RESUMO

Neutrophils are important effector cells of the innate immune system, traditionally regarded to have a short life span. The goal of this study was to evaluate the effect of the whole blood storage on neutrophil functions, e.g., viability, antimicrobial effect, neutrophil extracellular trap (NET) formation and phagocytosis. Therefore, fresh porcine whole blood was compared to whole blood stored for 24 h in the dark at room temperature. Different cell parameters in whole blood and in isolated neutrophils were analyzed. The following parameters were analyzed: cell count, band and segmented neutrophil count, viability, cholesterol content, release of free DNA as a marker for cell death, phagocytic activity in whole blood and in isolated neutrophils, the transmigration rate of neutrophils to IL8 stimulus, the production of reactive oxygen species (ROS), and the formation of NETs. It was observed that the number of isolated neutrophils decreased over time, indicating cell death occurs during 24 h of blood storage. However, the surviving neutrophils isolated from stored blood reacted comparably or even showed enhanced antimicrobial activity in the case of phagocytosis of Streptococcus (S.) suis, ROS production, and transmigration. The slightly altered cholesterol level of the harvested neutrophils in stored blood when compared to fresh blood partially explains some of the detected differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA