Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 7(16): e009358, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30369309

RESUMO

Background Obesity compromises cardiometabolic function and is associated with hypertension and chronic kidney disease. Exercise ameliorates these conditions, even without weight loss. Although the mechanisms of exercise's benefits remain unclear, augmented lean body mass is a suspected mechanism. Myostatin is a potent negative regulator of skeletal muscle mass that is upregulated in obesity and downregulated with exercise. The current study tested the hypothesis that deletion of myostatin would increase muscle mass and reduce blood pressure and kidney injury in obesity. Methods and Results Myostatin knockout mice were crossed to db/db mice, and metabolic and cardiovascular functions were examined. Deletion of myostatin increased skeletal muscle mass by ≈50% to 60% without concomitant weight loss or reduction in fat mass. Increased blood pressure in obesity was prevented by the deletion of myostatin, but did not confer additional benefit against salt loading. Kidney injury was evident because of increased albuminuria, which was abolished in obese mice lacking myostatin. Glycosuria, total urine volume, and whole kidney NOX-4 levels were increased in obesity and prevented by myostatin deletion, arguing that increased muscle mass provides a multipronged defense against renal dysfunction in obese mice. Conclusions These experimental observations suggest that loss of muscle mass is a novel risk factor in obesity-derived cardiovascular dysfunction. Interventions that increase muscle mass, either through exercise or pharmacologically, may help limit cardiovascular disease in obese individuals.


Assuntos
Hipertensão/fisiopatologia , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Composição Corporal , Glicosúria Renal/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , Miostatina/genética , NADPH Oxidase 4/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Fatores de Risco , Cloreto de Sódio na Dieta/farmacologia
2.
Metab Eng Commun ; 3: 8-14, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29142819

RESUMO

Cardiolipin (CL) is a phospholipid found in the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM) in animal cells. Isocitrate dehydrogenase (ICDH) is an important catalytic enzyme that is localized at the cytosol and mitochondria; the metabolic pathway catalyzed by ICDH differs between the OMM and IMM. To estimate the possible role of lipid membrane in the enzymatic activity of NADP+-dependent ICDH, CL-modified liposomes were prepared using CL/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol (Ch), and their characteristics were analyzed based on the fluorescent probe method. The relative enzymatic activity of ICDH decreased in the presence of CL/DPPC/Ch=(30/50/20) liposome, whereas activity increased in the presence of CL/DPPC/Ch=(5/75/20) liposome. NADP+ had the greatest substrate affinity and was dominant in the regulation of ICDH activity. Analysis of membrane properties indicated that membranes in CL-modified liposomes were dehydrated by ICDH binding. Using circular dichroism analysis, CL/DPPC/Ch=(30/50/20) liposome induced a conformational change in ICDH, indicating that CL-rich membrane domains could inhibit ICDH activity. These results suggest that lipid membranes, including CL molecules, could act as a platform to regulate ICDH-related metabolic pathways such as the tricarboxylic acid cycle and lipid synthesis.

3.
Redox Biol ; 1: 527-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24363993

RESUMO

Chronic kidney disease (CKD) is associated with endothelial dysfunction and accelerated cardiovascular disease, which are largely driven by systemic oxidative stress and inflammation. Oxidative stress and inflammation in CKD are associated with and, in part, due to impaired activity of the cytoprotective transcription factor Nrf2. RTA dh404 is a synthetic oleanane triterpenoid compound which potently activates Nrf2 and inhibits the pro-inflammatory transcription factor NF-κB. This study was designed to test the effects of RTA dh404 on endothelial function, inflammation, and the Nrf2-mediated antioxidative system in the aorta of rats with CKD induced by 5/6 nephrectomy. Sham-operated rats served as controls. Subgroups of CKD rats were treated orally with RTA dh404 (2 mg/kg/day) or vehicle for 12 weeks. The aortic rings from untreated CKD rats exhibited a significant reduction in the acetylcholine-induced relaxation response which was restored by RTA dh404 administration. Impaired endothelial function in the untreated CKD rats was accompanied by significant reduction of Nrf2 activity (nuclear translocation) and expression of its cytoprotective target genes, as well as accumulation of nitrotyrosine and upregulation of NAD(P)H oxidases, 12-lipoxygenase, MCP-1, and angiotensin II receptors in the aorta. These abnormalities were ameliorated by RTA dh404 administration, as demonstrated by the full or partial restoration of the expression of all the above analytes to sham control levels. Collectively, the data demonstrate that endothelial dysfunction in rats with CKD induced by 5/6 nephrectomy is associated with impaired Nrf2 activity in arterial tissue, which can be reversed with long term administration of RTA dh404.


Assuntos
Aorta/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Animais , Aorta/citologia , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Nefrectomia , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/etiologia
4.
J Biotechnol ; 168(3): 271-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24036136

RESUMO

The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with "free" enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor.


Assuntos
Acetofenonas/metabolismo , Álcool Desidrogenase/metabolismo , Aldeídos/metabolismo , Enzimas Imobilizadas/metabolismo , Cetonas/metabolismo , 2-Propanol/metabolismo , Aldeídos/química , Proteínas de Bactérias/metabolismo , Biocatálise , Biotecnologia , Coenzimas/metabolismo , Cetonas/química , Lactobacillus/enzimologia , Rhodococcus/enzimologia , Estereoisomerismo , Especificidade por Substrato
5.
Neurosci Lett ; 549: 57-62, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23721786

RESUMO

The most prominent mechanism proposed for death of dopaminergic neurons in Parkinson's disease (PD) is elevated generation of reactive oxygen/nitrogen species (ROS/RNS). Recent studies suggest that ROS produced during PD pathogenesis may contribute to cytotoxicity in cell culture models of PD. We hypothesized that inhibition of ROS production would prevent PD symptoms in the LRRK2(R1441G) transgenic (tg) mouse model of PD. These mice overexpress a mutant form of leucine-rich repeat kinase 2 (LRRK2) and are reported to develop PD-like symptoms at approximately 10 months of age. Despite similar expression of the transgene, our colony did not recapitulate the same type of motor dysfunction originally reported. However, tests of motor coordination (pole test, Rotor-Rod) revealed a significant defect in LRRK2(R1441G) mice by 16 months of age. LRRK2(R1441G) tg mice, or wild type littermates, were given diapocynin (200mg/kg, a proposed NADPH oxidase inhibitor) three times per week by oral gavage starting at 12 weeks of age. Decreased performance on the pole test and Rotor-Rod in the LRRK2(R1441G) mice was prevented with diapocynin treatment. No loss in open field movement or rearing was found. As expected, tyrosine hydroxylase staining was similar in both the substantia nigra and striatum in all treatment groups. Together these data demonstrate that diapocynin is a viable agent for protection of neurobehavioral function.


Assuntos
Acetofenonas/farmacologia , Compostos de Bifenilo/farmacologia , Marcha/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Proteínas Serina-Treonina Quinases/genética , Animais , Modelos Animais de Doenças , Marcha/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Teste de Desempenho do Rota-Rod
6.
Exp Toxicol Pathol ; 65(6): 853-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23332503

RESUMO

This study was designed to investigate the possible protective effect of lycopene against the renal toxic effects of OTA. Male Sprague-Dawley rats (<200 g, n=6) were treated with OTA (0.5 mg/kg/day) and/or lycopene (5 mg/kg/day) by gavage for 14 days. Histopathological examinations were performed and apoptotic cell death in both cortex and medulla was evaluated by TUNEL assay. Besides, biochemical parameters and activities of renal antioxidant selenoenzymes [glutathione peroxidase 1 (GPx1), thioredoxin reductase (TrxR)], catalase (CAT), superoxide dismutase (SOD); concentrations of total glutathione (GSH), and malondialdehyde (MDA) levels were measured. OTA treatment was found to induce oxidative stress in rat kidney, as evidenced by marked decreases in CAT (35%) activity and GSH levels (44%) as well as increase in SOD activity (22%) vs control group. Furthermore, TUNEL analysis revealed a significant increase in the number of TUNEL-positive cells in cortex (49%) and medulla (75%) in OTA administrated group compared to control (p<0.05). Lycopene supplementation with OTA increased GPx1 activity and GSH levels, and decreased apoptotic cell death in both cortex and medulla vs. control. The results of this study showed that at least one of the mechanisms underlying the renal toxicity of OTA is oxidative stress and apoptosis is the major form of cell death caused by OTA. Besides, our data indicate that the natural antioxidant lycopene might be partially protective against OTA-induced nephrotoxicity and oxidative stress in rat.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Carotenoides/uso terapêutico , Rim/efeitos dos fármacos , Ocratoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Peso Corporal/efeitos dos fármacos , Carotenoides/administração & dosagem , Carotenoides/farmacologia , Marcação In Situ das Extremidades Cortadas , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Licopeno , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA