Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373322

RESUMO

Dried blood spots (DBSs) biomarkers are convenient for monitoring for specific lysosomal storage diseases (LSDs), but they could have relevance for other LSDs. To determine the specificity and utility of glycosphingolipidoses biomarkers against other LSDs, we applied a multiplexed lipid liquid chromatography tandem mass spectrometry assay to a DBS cohort of healthy controls (n = 10) and Gaucher (n = 4), Fabry (n = 10), Pompe (n = 2), mucopolysaccharidosis types I-VI (n = 52), and Niemann-Pick disease type C (NPC) (n = 5) patients. We observed no complete disease specificity for any of the markers tested. However, comparison among the different LSDs highlighted new applications and perspectives of the existing biomarkers. We observed elevations in glucosylceramide isoforms in the NPC and Gaucher patients relative to the controls. In NPC, there was a greater proportion of C24 isoforms, giving a specificity of 96-97% for NPC, higher than 92% for the NPC biomarker N-palmitoyl-O-phosphocholineserine ratio to lyso-sphingomyelin. We also observed significantly elevated levels of lyso-dihexosylceramide in Gaucher and Fabry disease as well as elevated lyso-globotriaosylceramide (Lyso-Gb3) in Gaucher disease and the neuronopathic forms of Mucopolysaccharidoses. In conclusion, DBS glucosylceramide isoform profiling has increased the specificity for the detection of NPC, thereby improving diagnostic accuracy. Low levels of lyso-lipids can be observed in other LSDs, which may have implications in their disease pathogenesis.


Assuntos
Doença de Fabry , Doenças por Armazenamento dos Lisossomos , Humanos , Glucosilceramidas , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doença de Fabry/diagnóstico , Biomarcadores , Isoformas de Proteínas
3.
Int J Health Sci (Qassim) ; 15(1): 56-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456443

RESUMO

A 16-month-old Saudi boy has microcephaly and three rare genetic diseases [Riga Fede disease (RFD), Niemann-Pick C disease, and Fabry disease. In the published literature, there is no reported case with these four associations, especially RFD affection of the dorsal surface of the tongue. It is also a clear demonstration of how the proper diagnosis and treatment could provide a better quality of life, ease pain, resources, and money saving. The difficult RDF ulcer was resolved by a conservative treatment, which was accomplished by smoothing sharp edges and removing mamelons of the lower primary incisors using a diamond bur in a high-speed dental handpiece. The aim of this report is to present and discuss steps of diagnosis and the effect of misdiagnosis on the management of a very rare case.

4.
J Neurochem ; 156(6): 967-978, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880929

RESUMO

The lysosomal membrane protein Niemann-Pick type C1 (NPC1) and Niemann-Pick type C2 (NPC2) are main players of cholesterol control in the lysosome and it is known that the mutation on these proteins leads to the cholesterol trafficking-related neurodegenerative disease, which is called the NPC disease. The mutation R518W or R518Q on the NPC1 is one of the type of disease-related mutation that causes cholesterol transports to be cut in half, which results in the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment of the cell. Even though there has been significant progress with understanding the cholesterol transport by NPC1 in combination with NPC2, especially after the structural determination of the full-length NPC1 in 2016, many details such as the interaction of the full-length NPC1 with the NPC2, the molecular motions responsible for the cholesterol transport during and after this interaction, and the structure and the function relations of many mutations are still not well understood. In this study, we report the extensive molecular dynamics simulations in order to gain insight into the structure and the dynamics of NPC1 lumenal domain for the cholesterol transport and the disease behind the mutation (R518W). It was found that the mutation induces a structural shift of the N-terminal domain, toward the loop region in the middle lumenal domain, which is believed to play a central role in the interaction with NPC2 protein, so the interaction with the NPC2 protein might be less favorable compared to the wild NPC1. Also, the simulation indicates the possible re-orientation of the N-terminal domain with both the wild and the R518W-mutated NPC1 after receiving the cholesterol from the NPC2 that align to form an internal tunnel, which is a possible pose for further action in cholesterol trafficking. We believe the current study can provide a better understanding of the cholesterol transport by NPC1 especially the role of NTD of NPC1 in combination with NPC2 interactions.


Assuntos
Colesterol/metabolismo , Doença de Niemann-Pick Tipo C/genética , Transporte Biológico , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Lisossomos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Proteína C1 de Niemann-Pick , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Difração de Raios X
5.
Elife ; 92020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32410728

RESUMO

Transport of LDL-derived cholesterol from lysosomes into the cytoplasm requires NPC1 protein; NPC1L1 mediates uptake of dietary cholesterol. We introduced single disulfide bonds into NPC1 and NPC1L1 to explore the importance of inter-domain dynamics in cholesterol transport. Using a sensitive method to monitor lysosomal cholesterol efflux, we found that NPC1's N-terminal domain need not release from the rest of the protein for efficient cholesterol export. Either introducing single disulfide bonds to constrain lumenal/extracellular domains or shortening a cytoplasmic loop abolishes transport activity by both NPC1 and NPC1L1. The widely prescribed cholesterol uptake inhibitor, ezetimibe, blocks NPC1L1; we show that residues that lie at the interface between NPC1L1's three extracellular domains comprise the drug's binding site. These data support a model in which cholesterol passes through the cores of NPC1/NPC1L1 proteins; concerted movement of various domains is needed for transfer and ezetimibe blocks transport by binding to multiple domains simultaneously.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Transporte Biológico , Ezetimiba/farmacologia , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteína C1 de Niemann-Pick/química , Proteína C1 de Niemann-Pick/genética , Domínios Proteicos , Células Sf9 , Relação Estrutura-Atividade
6.
J Clin Med ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138288

RESUMO

Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 or NPC2 genes. In 2009, the molecular characterization of 44 NPC Italian patients has been published. Here, we present an update of the genetic findings in 105 Italian NPC patients belonging to 83 unrelated families (77 NPC1 and 6 NPC2). NPC1 and NPC2 genes were studied following an algorithm recently published. Eighty-four different NPC1 and five NPC2 alleles were identified. Only two NPC1 alleles remained non detected. Sixty-two percent of NPC1 alleles were due to missense variants. The most frequent NPC1 mutation was the p.F284Lfs*26 (5.8% of the alleles). All NPC2 mutations were found in the homozygous state, and all but one was severe. Among newly diagnosed patients, 18 novel NPC1 mutations were identified. The pathogenic nature of 7/9 missense alleles and 3/4 intronic variants was confirmed by filipin staining and NPC1 protein analysis or mRNA expression in patient's fibroblasts. Taken together, our previous published data and new results provide an overall picture of the molecular characteristics of NPC patients diagnosed so far in Italy.

7.
Neurogenetics ; 21(2): 105-119, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31927669

RESUMO

Changes in gene expression profiles were investigated in 23 patients with Niemann-Pick C1 disease (NPC). cDNA expression microarrays with subsequent validation by qRT-PCR were used. Comparison of NPC to control samples revealed upregulation of genes involved in inflammation (MMP3, THBS4), cytokine signalling (MMP3), extracellular matrix degradation (MMP3, CTSK), autophagy and apoptosis (CTSK, GPNMB, PTGIS), immune response (AKR1C3, RCAN2, PTGIS) and processes of neuronal development (RCAN2). Downregulated genes were associated with cytoskeletal signalling (ACTG2, CNN1); inflammation and oxidative stress (CNN1); inhibition of cell proliferation, migration and differentiation; ERK-MAPK pathway (COL4A1, COL4A2, CPA4); cell adhesion (IGFBP7); autophagy and apoptosis (CDH2, IGFBP7, COL4A2); neuronal function and development (CSRP1); and extracellular matrix stability (PLOD2). When comparing NPC and Gaucher patients together versus controls, upregulation of SERPINB2 and IL13RA2 and downregulation of CSRP1 and CNN1 were characteristic. Notably, in NPC patients, the expression of PTGIS is upregulated while the expression of PLOD2 is downregulated when compared to Gaucher patients or controls and potentially could serve to differentiate these patients. Interestingly, in NPC patients with (i) jaundice, splenomegaly and cognitive impairment/psychomotor delay-the expression of ACTG2 was especially downregulated; (ii) ataxia-the expression of ACTG2 and IGFBP5 was especially downregulated; and (iii) VSGP, dysarthria, dysphagia and epilepsy-the expression of AKR1C3 was especially upregulated while the expression of ACTG2 was downregulated. These results indicate disordered apoptosis, autophagy and cytoskeleton remodelling as well as upregulation of immune response and inflammation to play an important role in the pathogenesis of NPC in humans.


Assuntos
Apoptose/genética , Autofagia/genética , Proteínas do Citoesqueleto/genética , Inflamação/genética , Doença de Niemann-Pick Tipo C/genética , Transcriptoma , Linhagem Celular , Regulação para Baixo , Feminino , Humanos , Inflamação/complicações , Masculino , Doença de Niemann-Pick Tipo C/complicações , Transdução de Sinais
8.
Mutat Res Rev Mutat Res ; 782: 108284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31843136

RESUMO

Niemann-Pick C disease (NPC) is a rare autosomal recessive disorder characterized by severe neurodegeneration of central nervous system. Linkage studies in multiplex NPC families and genetic complementation research revealed two disease genes, NPC1 and NPC2, both of which are important transporters for cholesterol trafficking. NPC2 executes cholesterol-transport function through protein-protein interaction with NPC1 as well as through protein-membrane interaction directly with membrane of late endosome and lysosome. In addition, NPC2 may play many other roles as indicated by its widely expressing pattern in different cells and presenting in numerous secretory fluids, although it biological significance is less studied today. About 50 clinical cases have been reported documenting over twenty different mutations of NPC2 in NPC patients so far. In this review, we will mainly summarize the molecular characteristics and biological significance of NPC2, highlighting its vital roles in NPC disease.


Assuntos
Mutação/genética , Doenças de Niemann-Pick/genética , Proteínas de Transporte Vesicular/genética , Animais , Humanos , Transporte Proteico/genética
9.
J Biol Chem ; 294(5): 1706-1709, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710017

RESUMO

Low-density lipoprotein particles are taken up by cells and delivered to the lysosome where their cholesterol esters are cleaved off by acid lipase. The released, free cholesterol is then exported from lysosomes for cellular needs or storage. This article summarizes recent advances in our understanding of the molecular basis of cholesterol export from lysosomes. Cholesterol export requires NPC intracellular cholesterol transporter 1 (NPC1) and NPC2, genetic mutations of which can cause Niemann-Pick type C disease, a disorder characterized by massive lysosomal accumulation of cholesterol and glycosphingolipids. Analysis of the NPC1 and NPC2 structures and biochemical properties, together with new structures of the related Patched (PTCH) protein, provides new clues to the mechanisms by which NPC proteins may function.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/fisiopatologia
10.
Mol Genet Metab ; 126(2): 183-187, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30172462

RESUMO

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3ß,5α,6ß-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.


Assuntos
Ácidos e Sais Biliares/análise , Teste em Amostras de Sangue Seco , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/diagnóstico , Bancos de Espécimes Biológicos , Biomarcadores/sangue , California , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Recém-Nascido , Masculino , Michigan , Triagem Neonatal , New York , Estudos Retrospectivos , Espectrometria de Massas em Tandem
11.
J Appl Genet ; 59(4): 441-447, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30209687

RESUMO

Early onset Niemann-Pick C diseases are extremely rare, especially Niemann-Pick C2. Perhaps unusually for autosomal recessive diseases, heterozygotes for mutations in NPC1 manifest many biological variations. NPC2 deficiency has large effects on fertility. These features of NPC1 and NPC2 are reviewed in regard to possible negative selection for heterozygotes carrying null and hypomorphic alleles.


Assuntos
Proteínas de Transporte/genética , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Heterozigoto , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Alelos , Animais , Fertilidade/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Proteína C1 de Niemann-Pick , Seleção Genética , Proteínas de Transporte Vesicular
12.
Proc Natl Acad Sci U S A ; 114(1): 89-94, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994139

RESUMO

Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.


Assuntos
Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Triazóis/farmacologia , Androstenos/farmacologia , Animais , Antifúngicos/farmacologia , Sítios de Ligação/genética , Células CHO , Linhagem Celular , Cricetulus , Endocitose/fisiologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Ligação Proteica/fisiologia , Domínios Proteicos/genética
13.
Methods Cell Biol ; 126: 357-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665455

RESUMO

Niemann-Pick disease type C (NPC) is an atypical neurovisceral lysosomal storage disorder resulting from mutations in either the NPC1 or the NPC2 gene, currently conceived as a lipid trafficking disorder. Impaired egress of cholesterol from the late endosomal/lysosomal (LE/L) compartment is a key element of the pathogenesis. The resulting accumulation of unesterified cholesterol in the LE/L compartment can be visualized by fluorescence microscopy after staining with filipin. The "filipin test," performed on cultured fibroblasts, is the historical gold standard method to establish the diagnosis in patients. The authors provide methodological details of the protocol developed and used in their laboratory since 1988, in which two sources of low-density lipoproteins (LDL) (total serum and pure LDL) are used in parallel to facilitate the final interpretation. Methodological caveats and variability of patterns encountered in patients with proven Niemann-Pick C disease (typical "classic" or "intermediate," atypical "variant") are described. An overview of the past 5 years referrals (533 subjects tested, 57 NPC cases, but also 74 mildly/weakly positive tests not due to NPC) is discussed, leading to a proposed algorithm for interpretation of results in the filipin test. This tool takes into account the limits of the method. In up to 15% of all referrals, the filipin test was inconclusive in absence of molecular analysis. Patients diagnosed in the adult age preferentially showed an "intermediate" or "variant" pattern. Well conducted, the filipin test remains an efficient approach for diagnosing NPC, and it is a good functional test to study the pathogenicity of novel mutations.


Assuntos
Filipina/metabolismo , Doença de Niemann-Pick Tipo C/diagnóstico , Animais , Biomarcadores/metabolismo , Células Cultivadas , LDL-Colesterol/sangue , Humanos , Doença de Niemann-Pick Tipo C/metabolismo , Coloração e Rotulagem
14.
Clin Chim Acta ; 437: 93-100, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25038260

RESUMO

Two oxysterols, cholestan-3ß,5α,6ß-triol (C-triol) and 7-ketocholesterol (7-KC), have been recently proposed as diagnostic markers of Niemann-Pick type C (NP-C) disease, representing a potential alternative diagnostic tool to the more invasive and time consuming filipin test in cultured fibroblasts. Usually, the oxysterols are detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using atmospheric pressure chemical ionization (APCI) or electro-spray-ionization (ESI) sources, after a variety of derivatization procedures to enhance sensitivity. We developed a sensitive LC-MS/MS method to quantify the oxysterols in plasma as dimethylaminobutyrate ester, suitable for ESI analysis. This method, with an easy liquid-phase extraction and a short derivatization procedure, has been validated to demonstrate specificity, linearity, recovery, lowest limit of quantification, accuracy and precision. The assay was linear over a concentration range of 0.5-200ng/mL for C-triol and 1.0-200ng/mL for 7-KC. Intra-day and inter-day coefficients of variation (CV%) were <15% for both metabolites. Receiver operating characteristic analysis estimates that the area under curve was 0.998 for C-triol, and 0.972 for 7-KC, implying a significant discriminatory power for the method in this patient population of both oxysterols. In summary, our method provides a simple, rapid and non-invasive diagnostic tool for the biochemical diagnosis of NP-C disease.


Assuntos
Aminobutiratos/sangue , Colestanóis/sangue , Cetocolesteróis/sangue , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/diagnóstico , Espectrometria de Massas por Ionização por Electrospray/métodos , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Cromatografia Líquida/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fatores de Tempo , Adulto Jovem
15.
J Neurol Sci ; 335(1-2): 219-20, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24035292

RESUMO

Niemann-Pick C (NPC) disease is a rare autosomal recessive lipid storage disorder. We report here the unique occurrence of three adult heterozygous carriers of mutations in the NPC1 gene who also have a parkinsonism syndrome. This suggests the possibility that mutations in NPC1 could be a risk factor for Parkinson's disease similar to the phenomenon that is now recognized with Gaucher disease and the glucocerebrosidase (GBA) gene. This report should be a stimulus for larger more detailed epidemiological studies.


Assuntos
Doenças de Niemann-Pick/complicações , Doença de Parkinson/complicações , Idoso , Proteínas de Transporte/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Mutação/genética , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA