Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126407

RESUMO

This study investigated the effects of feeding clinoptilolite (CLN; 2.5% of diet DM) with a particle size of either 30- or 400-µm on ruminal fermentation characteristics, measures of nitrogen (N) utilization, and manure ammonia-N (NH3) emissions in feedlot cattle. The impact of directly applying 30- or 400-µm CLN to the pen surface (2,250 kg/ha) on manure NH3-N emissions was also evaluated. Six beef heifers were used in a replicated 3 × 3 Latin square design with 21-d periods. Dietary treatments were: 1) finishing ration with no supplement (CON), 2) CON + 30-µm CLN (CLN-30), and 3) CON + 400-µm CL (CLN-400). Intake was measured daily. To evaluate fermentation characteristics, ruminal fluid was collected on d 19. Indwelling pH loggers were used to measure ruminal pH from d 15 to 21. Blood was collected 3-h post-feeding on d 21 for metabolite analysis. Fecal grab and urine spot samples were also collected from d 19 to 21 to measure nutrient digestibility, route of N excretion, and in vitro NH3 emissions. There was no diet effect (P ≥ 0.12) on nutrient intake and apparent total tract digestibility, and ruminal short chain fatty acid (SCFA) profile and pH. Ruminal NH3 concentration, which was lower (P = 0.04) for CLN-30 than CON heifers, did not differ between CON and CLN-400 heifers. Although there was no diet effect (P = 0.50) on plasma urea-N (PUN) concentration, proportion of urea-N excreted in urine was lower (P = 0.01) for CLN-30 than CON and CLN-400 heifers. Urinary NH3-N excretion, which was greater (P ≤ 0.04) for CLN-400 than CON heifers, did not differ between CLN-30 and CLN-400 heifers. Feeding CLN also increased (P ≤ 0.02) fecal excretion of potassium (K) and iron (Fe) and reduced (P = 0.01) urinary excretion of calcium (Ca). There was a treatment × time interaction (P = 0.01) for NH3 emission rate, which was greatest within the first 36 h of incubation and was lower for manure from CLN-400 compared to CON and CLN-30 heifers and pen surface application treatments. Cumulative NH3 emissions were lower (P < 0.01) for manure from CLN-400 compared to CON and CLN-30 heifers and the pen surface application treatments. Although surface application was ineffective, feeding 400-µm CLN to finishing cattle could result in a beneficial decrease in manure NH3 emissions. However, changes in fecal and urine excretion of minerals like K and Ca, which suggest a decrease in bioavailability, need to be considered when feeding CLN in finishing cattle diets.

2.
J Hazard Mater ; 478: 135506, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39151360

RESUMO

Nitrogen addition is commonly used to remediate total petroleum hydrocarbons (TPH) in petroleum-contaminated soils. However, acceptable exogenous nitrogen dosages and their utilization efficiency for the degradation of hydrocarbons in oil-polluted soils are not well understood. This study compared the hydrocarbon bioremediation capacity by applying different doses of NH4Cl as a stimulant in soils contaminated with TPH at 8553 and 17090 mg/kg. The results showed acceptable exogenous nitrogen levels ranging from 60 to 360 mg N/kg soil, and the optimal nitrogen dosage for TPH remediation was 136 mg N/kg in soils with different TPH concentrations. The nitrogen availability efficiency (NAE) and nitrogen polarization factor availability (NPFA) in the 136 mg N/kg addition treatments were 6.69 and 20.47 mg/mg in 8533 mg/kg TPH-polluted soil, and 6.03 and 31.11 mg/mg in 17090 mg/kg TPH-polluted soil, respectively. Metagenomic analysis revealed that the application of 136 mg/kg nitrogen facilitated ammonia oxidation and nitrite reduction to nitric oxide, and induced soil microorganisms to undergo regulatory or adaptive changes in energy supply and metabolic state, which could aid in restoring the ecological functions of petroleum-contaminated soils. These findings underscore that 136 mg/kg of nitrogen dosage application is optimal for remediation of petroleum-contaminated soils irrespective of the TPH concentrations. This exogenous nitrogen application dosage for TPH remediation aligns with the nitrogen requirements for crop growth in agriculture.

3.
Anim Nutr ; 18: 57-71, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39035982

RESUMO

Dietary nutrient manipulation (e.g. protein fractions) could lower the environmental footprints of ruminants, especially reactive nitrogen (N). This study investigated the impacts of dietary soluble protein (SP) levels with decreased crude protein (CP) on intestinal N absorption, hindgut N metabolism, fecal microbiota and metabolites, and their linkage with N metabolism phenotype. Thirty-two male Hu sheep, with an age of six months and an initial BW of 40.37 ± 1.18 kg, were randomly assigned to four dietary groups. The control diet (CON), aligning with NRC standards, maintained a CP content of 16.7% on a dry matter basis. Conversely, the experimental diets (LPA, LPB, and LPC) featured a 10% reduction in CP compared with CON, accompanied by SP adjustments to 21.2%, 25.9%, and 29.4% of CP, respectively. Our results showed that low-protein diets led to significant reductions in the concentrations of plasma creatinine, ammonia, urea N, and fecal total short-chain fatty acids (SCFA) (P < 0.05). Notably, LPB and LPC exhibited increased total SCFA and propionate concentrations compared with LPA (P < 0.05). The enrichment of the Prevotella genus in fecal microbiota associated with energy metabolism and amino acid (AA) biosynthesis pathways was evident with SP levels in low-protein diets of approximately 25% to 30%. Moreover, LPB and LPC diets demonstrated a decrease in fecal NH 4 + -N and NO 2 - -N contents as well as urease activity, compared with CON (P < 0.05). Concomitantly, reductions in fecal glutamic acid dehydrogenase gene (gdh), nitrite reductase gene (nirS), and nitric oxide reductase gene (norB) abundances were observed (P < 0.05), pointing towards a potential reduction in reactive N production at the source. Of significance, the up-regulation of mRNA abundance of AA and peptide transporters in the small intestine (duodenum, jejunum, and ileum) and the elevated concentration of plasma AA (e.g. arginine, methionine, aspartate, glutamate, etc.) underscored the enhancement of N absorption and N efficiency. In summary, a 10% reduction in CP, coupled with an SP level of approximately 25% to 30%, demonstrated the potential to curtail reactive N emissions through fecal Prevotella enrichment and improve intestinal energy and N utilization efficiency.

4.
Plants (Basel) ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065486

RESUMO

This study examines the potential of 23 plant species, comprising 10 legumes, 9 grasses, and 4 forbs, as cover crops to enhance carbon (C) sequestration and soil nitrogen (N) in vineyards. After a 120-day evaluation period, cover crop biomass was incorporated into the soil, and grapevine seedlings were planted in its place. Among the established cover crops, the C input potential ranged from 0.267 to 1.69 Mg ha-1, and the N input potential ranged from 12.3 to 114 kg ha-1. Legume species exhibited up to threefold greater shoot dry weight (SDW) compared to grass species. Ladino white clover, Dutch white clover, and Clover blend were superior in SDW, total dry weight (TDW), total C content, and total N content. Legumes exhibited slightly higher root dry weight (RDW) than grasses, with the exception of Fall rye leading at 15 g pot-1, followed by Ladino white clover and Dutch white clover at an average of 12 g pot-1. Legumes, particularly clover blend and Alsike clover, displayed high shoot N concentration at an average of 2.95%. Root N concentration in Legumes (Fabaceae) were significantly higher at 1.82% compared to other plant families at 0.89%, while their root C/N ratio was lower at 18.3, contrasting with others at 27.7, resulting in a faster turnover. Biomass production exhibited a negative relationship (R2 = 0.51) with soil residual NO3-. Fall rye, Winfred brassica, and buckwheat had the highest N utilization efficiency (NUtE) values (ava. 121 g g-1). Alsike clover, Ladino white clover, and clover blend showed the highest N uptake efficiency (NUpE) values (ava. 75%). The Readily Available N (RAN) Reliance Index (RANRI) is introduced as a novel indicator for quantifying the extent to which a plant relies on RAN for its total N requirement. The RANRI value represents the percentage of the plant's total N sourced from RAN, ranging from 11% for legumes to 86% for grasses. This implies a substantial influx of nitrogen through a pathway independent of RAN in legumes. Grape shoot N concentration positively correlated with soil NO3- (R2 = 0.31) and cover crop C/N ratio (R2 = 0.17) but negatively correlated with cover crop TDW (R2 = 0.31). This study highlights legume plants as more effective in C and N assimilation during establishment but cautions about potential soil mineral N depletion before reaching their full biological N fixation capacity.

5.
Plant Biol (Stuttg) ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985647

RESUMO

Nitrogen (N) content affects aboveground maize growth and nutrient absorption by altering the belowground rhizospheric ecosystem, impacting both yield and quality. However, the mechanisms through which different N supply methods (chemical and biological N supplies) regulate the belowground rhizospheric ecosystem to enhance maize yield remain unclear. To address this issue, we conducted a field experiment in northeast China, comprising three treatments: maize monocropping without N fertilizer application (MM), maize/alfalfa intercropping without N fertilizer application (BNF), and maize monocropping with N fertilizer application (CNS). The MM treatment represents the control, while the BNF treatment represents the biological N supply form, and CNS treatment represents the chemical N supply form. In the autumn of 2019, samples of maize and rhizospheric soil were collected to assess parameters including yield, rhizospheric soil characteristics, and microbial indicators. Both BNF and MM significantly increased maize yield and different yield components compared with MM, with no statistically significant difference in total yield between BNF and CNS. Furthermore, BNF significantly improved N by 12.61% and available N (AN) by 13.20% compared with MM. Furthermore, BNF treatment also significantly increased the Shannon index by 1.90%, while the CNS treatment significantly increased the Chao1 index by 28.1% and ACE index by 29.49%, with no significant difference between CNS and BNF. However, CNS had a more pronounced impact on structure of the rhizosphere soil bacterial community compared to BNF, inducing more significant fluctuations within the microbial network (modularity index and negative cohesion index). Regarding N transformation pathways predicted by bacterial functions, BNF significantly increased the N fixation pathway, while CNS significantly increased assimilatory nitrate reduction. In CNS, AN, NO3-N, NH4-N, assimilatory nitrate reduction, and community structure contributed significantly to maize yield, whereas in BNF, N fixation, community structure, community stability, NO3-N, and NH4-N played significant roles in enhancing maize yield. While CNS and BNF can achieve comparable maize yields in practical agricultural production, they have significantly different impacts on the belowground rhizosphere ecosystem, leading to different mechanisms of yield enhancement.

6.
Plants (Basel) ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891257

RESUMO

The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.

7.
Animal ; 18(6): 101184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843665

RESUMO

To avoid a high body protein mobilization in modern lean sows during lactation, an adequate dietary amino acid (AA) supply and an efficient AA utilization are crucial. This study evaluated the effects of dietary CP and in vitro protein digestion kinetics on changes in sow body condition, litter weight gain, milk composition, blood metabolites, protein utilization efficiency and subsequent reproductive performance. We hypothesized that a slower digestion of dietary protein would improve AA availability and utilization. In total, 110 multiparous sows were fed one of four lactation diets in a 2 × 2 factorial design, with two CP concentrations: 140 g/kg vs 180 g/kg, and two protein digestion kinetics, expressed as a percentage of slow protein (in vitro degradation between 30 and 240 min): 8 vs 16% of total protein. Feeding sows the high CP diets reduced sow weight loss (Δ = 7.6 kg, P < 0.01), estimated body fat loss (Δ = 2.6 kg, P = 0.02), and estimated body protein loss (Δ = 1.0 kg, P = 0.08), but only at a high percentage of slow protein. A higher percentage of slow protein increased litter weight gain throughout lactation (Δ = 2.6 kg, P = 0.04) regardless of CP concentrations, whereas a higher CP only increased litter weight gain during week 3 of lactation (Δ = 1.2 kg, P = 0.01). On Day 15 postfarrowing, serial blood samples were taken from a subsample of sows fed with the high CP diets. In these sows, a high percentage of slow protein resulted in higher plasma AA concentrations at 150 and 180 min after feeding (Δ = 0.89, P = 0.02, Δ = 0.78, P = 0.03, mmol/L, respectively) and lower increases in urea at 90 and 120 min after feeding (Δ = 0.67, P = 0.04, Δ = 0.70, P = 0.03, mmol/L, respectively). The higher dietary CP concentration increased total nitrogen loss to the environment (Δ = 604 g, P < 0.01) with a reduction of protein efficiency (Δ = 14.8%, P < 0.01). In the next farrowing, a higher percentage of slow protein increased subsequent liveborn litter size (Δ = 0.7, P < 0.05). In conclusion, feeding sows with a high dietary CP concentration alleviated maternal weight loss during lactation when the dietary protein digestion rate was slower, but lowered protein efficiency. A slower protein digestion improved litter weight gain, possibly by reducing AA oxidation and improving plasma AA availability, thus, improving protein efficiency.


Assuntos
Aminoácidos , Ração Animal , Dieta , Digestão , Lactação , Reprodução , Aumento de Peso , Animais , Feminino , Aminoácidos/metabolismo , Aminoácidos/sangue , Ração Animal/análise , Dieta/veterinária , Suínos/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Digestão/efeitos dos fármacos , Digestão/fisiologia , Período Pós-Prandial , Redução de Peso , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Leite/química , Leite/metabolismo , Gravidez
8.
Plants (Basel) ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794453

RESUMO

Quantitative evaluation of the effects of diverse greenhouse vegetable production systems (GVPS) on vegetable yield, soil water consumption, and nitrogen (N) fates could provide a scientific basis for identifying optimum water and fertilizer management practices for GVPS. This research was conducted from 2013 to 2015 in a greenhouse vegetable field in Quzhou County, North China. Three production systems were designed: conventional (CON), integrated (INT), and organic (ORG) systems. The WHCNS-Veg model was employed for simulating vegetable growth, water dynamics, and fates of N, as well as water and N use efficiencies (WUE and NUE) for four continuous growing seasons. The simulation results revealed that nitrate leaching and gaseous N emissions constituted the predominant N loss within GVPS, which separately accounted for 11.5-59.4% and 6.0-21.1% of the N outputs. The order of vegetable yield, N uptake, WUE, and NUE under different production systems was ORG > INT > CON, while the order of nitrate leaching and gaseous N loss was CON > INT > ORG. Compared to CON, ORG exhibited a significant increase in yield, N uptake, WUE, and NUE by 24.6%, 24.2%, 26.1%, and 89.7%, respectively, alongside notable reductions in nitrate leaching and gaseous N loss by 67.7% and 63.2%, respectively. The ORG system should be recommended to local farmers.

9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38659196

RESUMO

The aim of the study was to investigate whether increased inclusion of sugar beet pulp (SBP) alters retention of fat, protein, and energy when backfat (BF) is restored in early- and mid-gestation. In total, 46 sows were fed one of four dietary treatments with increasing inclusion of SBP providing dietary fiber (DF) levels of 119, 152, 185, and 217 g/kg; sows were assigned to one of three feeding strategies (FS; high, medium, and low) depending on BF thickness at mating and again at day 30 for the following month. On days 0, 30, 60, and 108, body weight (BW) and BF thickness were measured and body pools of protein and fat were estimated using the deuterium oxide technique. On days 30 and 60, urine, feces, and blood samples were collected to quantify metabolites, energy, and nitrogen (N) balances. On days 15 and 45, heart rate was recorded to estimate heat energy. At farrowing, total born and weight of the litter were recorded. In early gestation, BW gain (P < 0.01) and body protein retention increased (P < 0.05) with increasing fiber inclusion, while body fat retention increased numerically by 59%. The increase in BF was greatest for sows fed the high FS, intermediate when fed the medium strategy, and negligible for sows fed the lowest FS (P < 0.001). Nitrogen intake, N loss in feces, and N balance increased linearly, whereas N loss in urine tended to decrease with increasing inclusion of fibers in early gestation. Concomitantly, fecal energy output and energy lost as methane increased linearly (P < 0.001), while energy output in urine declined linearly. Total metabolizable energy (ME) intake therefore increased from 36.5 MJ ME/d in the low fiber group to 38.5 MJ ME/d in the high fiber group (P < 0.01). Changing the ME towards more ketogenic energy was expected to favor fat retention rather than protein retention. However, due to increased intake of ME and increased N efficiency with increasing fiber inclusion, the sows gained more weight and protein with increasing fiber inclusion. In conclusion, increased feed intake improved both fat and protein retention, whereas increased DF intake increased protein retention.


Feeding sows sugar beet pulp (SBP) has many known benefits, for example, increased satiety and high fermentability. This study investigates the ability of the sow to utilize energy for fat retention when replacing part of starch with dietary fiber. After a demanding lactation, sows need to restore body fat, and concomitantly avoid excessive protein retention, which will increase energy demand for maintenance and risk of locomotory problems. The hypothesis in this study is that energy from fermented fibers is more efficient for fat retention than dietary starch. In the study, sows had numerically greater fat retention when fed high concentrations of fiber from SBP, but concomitantly sows unintendedly also increased their protein retention, which in turn substantially increased their body weight. Sows were allocated to one of three feeding strategies depending on their body condition score (lean, medium, or fat) in early gestation, and backfat was efficiently restored in most sows within a month. In conclusion, although gestating sows have a high capability to utilize energy from fermentable fiber, they are disposed to protein over fat retention. These aspects need to be addressed in the nutrition of modern genotype sows.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Fibras na Dieta , Metabolismo Energético , Animais , Fibras na Dieta/metabolismo , Feminino , Ração Animal/análise , Gravidez , Dieta/veterinária , Suínos/fisiologia , Beta vulgaris/química , Tecido Adiposo/metabolismo
10.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38558239

RESUMO

Fifty-two multiparous sows (average parity 3.1 ±â€…0.9 and initial BW 245.6 ±â€…32.5 kg) were used to evaluate the effects of dietary standardized ileal digestible (SID) Lys-to-net energy (NE) ratios on nitrogen (N) utilization throughout a 24-d lactation period. Sows were randomly assigned to one of five isoenergetic feeding programs that provided equally spaced and increasing SID Lys-to-NE ratios between 2.79 and 5.50 g SID Lys/Mcal NE. The feeding programs were generated by blending the two extreme diets in varying proportions and were provided to sows immediately after farrowing (day 1) and until weaning at day 24 ±â€…1. Nitrogen balances were conducted between days 4 and 7, 12 and 15, and 20 and 23 ±â€…1 of lactation to represent weeks 1, 2, and 3, respectively, using total urine collection and fecal grab sampling. Contrast statements were used to determine the linear and quadratic effects of increasing Lys-to-NE ratios. Linear and quadratic broken-line and polynomial quadratic (QPM) models were used to determine the optimum dietary Lys-to-NE ratios for N retention in milk. The Bayesian information criterion was used to assess the best fit. Feeding program did not influence sow average daily feed intake (5.8 ±â€…0.1 kg), BW change (-8.2 ±â€…3.1 kg), or change in back fat thickness (-2.6 ±â€…0.7 mm) over the 24-d lactation period, but piglet average daily gain increased with dietary SID Lys-to-NE ratio (linear; P < 0.05). Sow N intake increased with increasing dietary Lys-to-NE ratio in weeks 2 and 3 (linear; P < 0.001). Whole-body N retention (N intake - N output in urine and feces) increased with increasing dietary Lys-to-NE ratio in all weeks (linear; P < 0.05). The N retention in milk tended to increase then decrease with increasing dietary Lys-to-NE ratio in weeks 1 and 2 (quadratic; P = 0.051 and P = 0.081) and the QPM showed optimal milk N retention at 4.28, 4.42, and 4.67 g Lys/Mcal NE for weeks 1, 2, and 3, respectively. Maternal N retention (N intake - N output in urine, feces, and milk) decreased and then increased in week 1 (quadratic; P < 0.01) and increased in weeks 2 and 3 (linear; P < 0.01) with increasing dietary Lys-to-NE ratio. Therefore, the SID Lys-to-NE ratio necessary to optimize milk N output is dynamic throughout lactation. A two-diet feeding program could be created to match optimal weekly or daily SID Lys-to-NE ratios, which could lead to improved piglet ADG and body weights at weaning.


Despite significant changes in nutrient and energy requirements as well as voluntary feed intake during lactation, sows are typically fed a single diet with a static nutrient and energy composition throughout the entire lactation period, which may not optimize milk output. Fifty-two sows were used to explore how various ratios of standardized ileal digestible (SID) Lys to net energy (NE) in lactating sow diets affect the growth of piglets and nitrogen utilization during a 24-d lactation period. Sows were randomly assigned to one of five feeding programs that contained equal amounts of energy and provided equally spaced and increasing Lys-to-NE ratios between 2.79 and 5.50 g SID Lys/Mcal NE immediately after farrowing. The dietary Lys-to-NE ratio did not influence sow daily feed intake, body weight change, or change in backfat thickness over the 24-d lactation period; however, piglet growth rate and body weight at weaning increased with increasing Lys-to-NE ratio. The SID Lys-to-NE ratio necessary to optimize milk nitrogen output was 4.28, 4.42, and 4.67 g SID Lys/Mcal NE during weeks one, two, and three of lactation, respectively. Therefore, it is possible to create a two-diet feeding program offering dynamic SID Lys-to-NE ratios as lactation progresses, which could lead to improved piglet average daily gain and body weights at weaning.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Lactação , Lisina , Leite , Nitrogênio , Animais , Feminino , Lactação/fisiologia , Nitrogênio/metabolismo , Dieta/veterinária , Lisina/administração & dosagem , Lisina/metabolismo , Ração Animal/análise , Leite/química , Suínos/fisiologia , Digestão/fisiologia , Digestão/efeitos dos fármacos , Metabolismo Energético , Íleo/fisiologia
11.
Front Microbiol ; 15: 1354537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659980

RESUMO

As global demand for pork continues to rise, strategies to enhance nitrogen utilization efficiency (NUE) in pig farming have become vital for environmental sustainability. This study explored the relationship between the fecal microbiota, their metabolites, and NUE in crossbreed fattening pigs with a defined family structure. Pigs were kept under standardized conditions and fed in a two-phase feeding regime. In each phase, one fecal sample was collected from each pig. DNA was extracted from a total of 892 fecal samples and subjected to target amplicon sequencing. The results indicated an influence of sire, sampling period (SP), and sex on the fecal microbiota. Streptococcus emerged as a potential biomarker in comparing high and low NUE pigs in SP 1, suggesting a genetic predisposition to NUE regarding the fecal microbiota. All fecal samples were grouped into two enterotype-like clusters named cluster LACTO and cluster CSST. Pigs' affiliation with enterotype-like clusters altered over time and might be sex-dependent. The stable cluster CSST demonstrated the highest NUE despite containing pigs with lower performance characteristics such as average daily gain, dry matter intake, and daily nitrogen retention. This research contributes with valuable insights into the microbiome's role in NUE, paving the way for future strategies to enhance sustainable pig production.

12.
J Anim Breed Genet ; 141(5): 559-570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38526066

RESUMO

Improving the nutrient efficiency in pork production is required to reduce the resource competition between human food and animal feed regarding diet components edible for humans and to minimize emissions relevant to climate or the environment. Thereby, protein utilization efficiency and its equivalent nitrogen utilization efficiency (NUE) play a major role. Breeding for more nitrogen (N) efficient pigs bears a promising strategy to improve such traits, however, directly phenotyping NUE based on N balance data is neither cost-efficient nor straightforward and not applicable for routine evaluations. Blood urea nitrogen (BUN) levels in the pig are suitable to predict the NUE and, therefore, might be an indicator trait for NUE because BUN is a relatively easy-to-measure trait. This study investigated the suitability of NUE as a selection trait in future breeding programs. The relationships to classical growth performance and feed efficiency traits were analysed as well as the relationship to BUN to infer the role of BUN as an indicator trait to improve NUE via breeding. The analyzes were based on a Landrace F1 cross population consisting of 502 individuals who descended from 20 Piétrain sires. All animals were genotyped for 48,525 SNPs. They were phenotyped in two different fattening phases, i.e., FP1 and FP2, during the experiment. Uni- and bivariate analyses were run to estimate variance components and to determine the genetic correlation between different traits or between the same trait measured at different time points. Moderate heritabilities were estimated for all traits, whereby the heritability for NUE was h2 = 0.293 in FP1 and h2 = 0.163 in FP2 and BUN had the by far highest heritability (h2 = 0.415 in FP1 and h2 = 0.460 in FP2). The significant genetic correlation between NUE and BUN showed the potential of BUN to be considered an indicator trait for NUE. This was particularly pronounced when NUE was measured in FP1 (genetic correlations r g = - 0.631 and r g = - 0.688 between NUE and BUN measured in FP1 and FP2, respectively). The genetic correlations of NUE and BUN with important production traits suggest selecting pigs with high growth rates and low BUN levels to breed more efficient pigs in future breeding programs.


Assuntos
Ração Animal , Nitrogênio da Ureia Sanguínea , Nitrogênio , Animais , Nitrogênio/metabolismo , Ração Animal/análise , Suínos/genética , Suínos/crescimento & desenvolvimento , Cruzamento , Fenótipo , Masculino , Polimorfismo de Nucleotídeo Único , Feminino , Genômica , Genótipo
13.
J Dairy Sci ; 107(8): 5616-5625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38490554

RESUMO

Recently reviewed development objectives and feeding practices in young dairy calves require an adaptation of nutrient recommendations set for milk replacer (MR) composition. Nutrient requirements of calves younger than 21 d of age, and those of calves fed with high levels of MR are insufficiently quantified. The efficiency at which macronutrients are utilized, particularly protein, substantially diminishes with age, and little data exists for the first weeks of life. In addition, in older preruminant and ruminant calves, protein and energy can be simultaneously limiting for protein gain. Whether this also applies to calves in the first weeks of life is unknown. Therefore, this study aimed to quantify the responses in protein and fat gain to incremental supply of protein, fat, or lactose to MR in very young calves. Thirty-two groups of 3 mixed-sex Holstein-Friesian newborn calves (3.4 ± 1.6 d of age), were randomly assigned to 1 of 4 dietary treatments applied for 19 d: a basal MR (23.3% crude protein, 21.2% crude fat, and 48.8% lactose, percentages of dry matter), provided at 550 kJ/kg of metabolic body weight (BW0.85) per day (CON; n = 24), or the basal MR incrementally supplied with 126 kJ of digestible energy per BW0.85 per day as milk fat (+FAT; n = 23), lactose (+LAC; n = 24), or milk protein (+PRO; n = 23). Calves were fed MR in 2 daily meals and had ad libitum access to water, but did not have access to calf starter nor any other solid feed. After 2 wk of adaptation to their respective diets, groups of calves were placed for 1 wk in an open-circuit respiration chamber for nitrogen and energy balance measurements (5 d). The incremental nutrient efficiencies indicate what percentage of extra intake of nutrients is retained. In this study, we observed that with every 100-g increase in protein intake, 52% was converted into protein deposition, and 44% contributed to heat production. Similarly, a 100-g increase in fat intake resulted in 67% being stored as fat, 22% being released as heat, and only 5% being retained as protein. Likewise, a 100-g increment in lactose intake led to 49% being stored as fat, with 38% being released as heat. Additional protein intake was not deposited as fat; extra energy intake (fat and additional lactose) increased postabsorptive N efficiency in young calves.


Assuntos
Ração Animal , Dieta , Metabolismo Energético , Animais , Bovinos , Dieta/veterinária , Nutrientes/metabolismo , Leite/química , Leite/metabolismo , Feminino , Proteínas Alimentares/metabolismo , Desmame , Masculino , Fenômenos Fisiológicos da Nutrição Animal
14.
J Anim Sci Biotechnol ; 15(1): 49, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500230

RESUMO

BACKGROUND: Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization. The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies. However, research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited. This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets. METHODS: Sixty-four barrows (15.00 ± 1.12 kg) were randomly allotted to 4 groups and fed diets formulated with starch from corn, corn/barley, corn/sorghum, or corn/cassava combinations (diets were coded A, B, C, or D respectively). Protein retention, the concentrations of portal amino acid and glucose, and the relative expression of amino acid and glucose transporter mRNAs were investigated. In vitro digestion was used to compare the dietary glucose release profiles. RESULTS: Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources. The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics. Total nitrogen excretion was reduced in the piglets in group B, while apparent nitrogen digestibility and nitrogen retention increased (P < 0.05). Regardless of the time (2 h or 4 h after morning feeding), the portal total free amino acids content and contents of some individual amino acids (Thr, Glu, Gly, Ala, and Ile) of the piglets in group B were significantly higher than those in groups A, C, and D (P < 0.05). Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets, which decreased gradually with the extension of feeding time. The portal His/Phe, Pro/Glu, Leu/Val, Lys/Met, Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments. In the anterior jejunum, the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1, EAAC1, and CAT1. CONCLUSIONS: Rational allocation of starch resources could regulate dietary glucose release kinetics. In the present study, group B (corn/barley) diet exhibited a better glucose release kinetic pattern than the other groups, which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine, thereby promoting nitrogen deposition in the body, and improving the utilization efficiency of dietary nitrogen.

15.
Front Vet Sci ; 11: 1330876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487709

RESUMO

The dietary rumen-degradable starch (RDS) to rumen-degradable protein (RDP) ratio, denoted as the RDS-to-RDP ratio (SPR), has been proven to enhance in vitro rumen fermentation. However, the effects of dietary SPR in vivo remain largely unexplored. This study was conducted to investigate the effect of dietary SPR on lactation performance, nutrient digestibility, rumen fermentation patterns, blood indicators, and nitrogen (N) partitioning in mid-lactating Holstein cows. Seventy-two Holstein dairy cows were randomly assigned to three groups (24 head/group), balanced for (mean ± standard deviation) days in milk (116 ± 21.5), parity (2.1 ± 0.8), milk production (42 ± 2.1 kg/d), and body weight (705 ± 52.5 kg). The cows were fed diets with low (2.1, control), medium (2.3), or high (2.5) SPR, formulated to be isoenergetic, isonitrogenous, and iso-starch. The study consisted of a one-week adaptation phase followed by an eight-week experimental period. The results indicated that the high SPR group had a lower dry matter intake compared to the other groups (p < 0.05). A quadratic increase in milk yield and feed efficiency was observed with increasing dietary SPR (p < 0.05), peaking in the medium SPR group. The medium SPR group exhibited a lower milk somatic cell count and a higher blood total antioxidant capacity compared to other groups (p < 0.05). With increasing dietary SPR, there was a quadratic improvement (p < 0.05) in the total tract apparent digestibility of crude protein, ether extract, starch, neutral detergent fiber, and acid detergent fiber. Although no treatment effect was observed in rumen pH, the rumen total volatile fatty acids concentration and microbial crude protein synthesis increased quadratically (p < 0.05) as dietary SPR increased. The molar proportion of propionate linearly increased (p = 0.01), while branched-chain volatile fatty acids linearly decreased (p = 0.01) with increasing dietary SPR. The low SPR group (control) exhibited higher concentration of milk urea N, rumen ammonia N, and blood urea N than other groups (p < 0.05). Despite a linear decrease (p < 0.05) in the proportion of urinary N to N intake, increasing dietary SPR led to a quadratic increase (p = 0.01) in N utilization efficiency and a quadratic decrease (p < 0.05) in the proportion of fecal N to N intake. In conclusion, optimizing dietary SPR has the potential to enhance lactation performance and N utilization efficiency. Based on our findings, a medium dietary SPR (with SPR = 2.3) is recommended for mid-lactating Holstein dairy cows. Nevertheless, further research on rumen microbial composition and metabolites is warranted to elucidate the underlying mechanisms of the observed effects.

16.
J Dairy Sci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554823

RESUMO

The study investigated the effects of dietary protein level and the inclusion of hydroponic barley sprouts (HB) on lactation performance, blood biochemistry and N use efficiency in mid-lactation dairy cows. Treatments were arranged in a 2 × 2 factorial design with 2 crude protein (CP) levels [16.8% and 15.5% of dry matter (DM)], with HB (4.8% of DM, replacing 4.3% of alfalfa hay and 0.5% of distillers dried grains with solubles (DDGS)) or without HB. Forty-eight multiparous Holstein dairy cows (146 ± 15 d in milk, 40 ± 5 kg/d of milk) were randomly allocated to 1 of 4 diets: high protein diet (16.8% CP, HP), HP with HB (HP+HB), low protein diet (15.5% CP, LP), or LP with HB (LP+HB). An interaction between CP × HB on dry matter intake (DMI) was detected, with DMI being unaffected by HB inclusion in cows fed the high CP diets, but was lower in cows fed HB when the low CP diet was fed. A CP × HB interaction was also observed on milk and milk protein yield, which was higher in cows fed HB with HP, but not LP. Inclusion of HB also tended to reduce milk fat content, and feeding HP resulted in a higher milk protein and milk urea N content, but lower milk lactose content. Feed efficiency was increased by feeding HP or HB diets, whereas N efficiency was higher for cows fed LP or HB diets. There was an interaction on the apparent total-tract digestibility of DM and CP, which was higher when HB was fed along with HP, but reduced when fed with LP, whereas the digestibility of ADF was increased by feeding low protein diets. In conclusion, feeding a low protein diet had no adverse effect on cow performance, while feeding HB improved milk and milk component yield, and N efficiency when fed with a high CP diet, but compromised cow performance with a low CP diet.

17.
Food Chem ; 446: 138780, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402764

RESUMO

Soybean proteins (pro) and soybean peptides (pep) are beneficial to the growth and metabolism of Limosilactobacillus reuteri (L. reuteri). However, whether they could assist L. reuteri in inhibiting intestinal pathogens and the inhibition mode of them is still unclear. In this study, a co-culture experiment of L. reuteri LR08 with Escherichia coli JCM 1649 (E. coli) was performed. It showed that pro and pep could still favour the growth of L. reuteri over E. coli under their competition. The inhibition zone experiment showed the digested soybean proteins (dpro) could improve its antibacterial activity by increasing the secretion of organic acids from L. reuteri. Furthermore, digested soybean peptides (dpep) could enhance nitrogen utilization capacity of L. reuteri over E. coli. These results explained the patterns of dpro and dpep assisting L. reuteri in inhibiting the growth of E. coli by regulating its organic acid secretion and the ability of nitrogen utilization.


Assuntos
Limosilactobacillus reuteri , Escherichia coli , Proteínas de Soja/farmacologia , Antibacterianos/farmacologia , Peptídeos/farmacologia , Nitrogênio
18.
Anim Biosci ; 37(2): 385-395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186255

RESUMO

Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.

19.
J Environ Manage ; 351: 119738, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061102

RESUMO

Nitrogen (N) cycle is one of the most significant biogeochemical cycles driven by soil microorganisms on the earth. Exogenous humic substances (HS), which include composted-HS and artificial-HS, as a new soil additive, can improve the water retention capacity, cation exchange capacity and soil nutrient utilization, compensating for the decrease of soil HS content caused by soil overutilization. This paper systematically reviewed the contribution of three different sources of HS in the soil-plant system and explained the mechanisms of N transformation through physiological and biochemical pathways. HS convert the living space and living environment of microorganisms by changing the structure and condition of soil. Generally, HS can fix atmospheric and soil N through biotic and abiotic mechanisms, which improved the availability of N. Besides, HS transform the root structure of plants through physiological and biochemical pathways to promote the absorption of inorganic N by plants. The redox properties of HS participate in soil N transformation by altering the electron gain and loss of microorganisms. Moreover, to alleviate the energy crisis and environmental problems caused by N pollution, we also illustrated the mechanisms reducing soil N2O emissions by HS and the application prospects of artificial-HS. Eventually, a combination of indoor simulation and field test, molecular biology and stable isotope techniques are needed to systematically analyze the potential mechanisms of soil N transformation, representing an important step forward for understanding the relevance between remediation of environmental pollution and improvement of the N utilization in soil-plant system.


Assuntos
Substâncias Húmicas , Solo , Substâncias Húmicas/análise , Ecossistema , Plantas/metabolismo , Poluição Ambiental , Nitrogênio/metabolismo
20.
Toxics ; 11(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133410

RESUMO

Cadmium (Cd) contamination in the soil potentially hampers microbial biomass and adversely affects their services such as decomposition and mineralization of organic matter. It can reduce nitrogen (N) metabolism and consequently affect plant growth and physiology. Further, Cd accumulation in plants can pose health risks through vegetable consumption. Here, we investigated consequences of Cd contamination on fertilizer value and associated health risks following the application of biogas residues (BGR) to various soil types. Our results indicate that the application of BGR to all soil types significantly increased dry matter (DM) yield and N uptake. However, the Cd contamination negatively affected DM yield and N recovery from BGR in a dose-dependent manner. Organic N mineralization from BGR also decreased in Cd-contaminated soils. The highest DM yield and N recovery were recorded in sandy soil, whereas the lowest values were observed in clay soil. Cadmium was accumulated in spinach, and health risk index (HRI) associated with its dietary intake revealed that consuming spinach grown in Cd-contaminated soil, with or without BGR, is unsafe. Among the soil types, values of daily intake of metals (DIM) and HRI were lowest in clay soil and highest in sandy soil. However, the application of BGR curtailed HRI across all soil types. Notably, the application of BGR alone resulted in HRI values < 1, which are under the safe limit. We conclude that soil contamination with Cd reduces fertilizer value and entails implications for human health. However, the application of BGR to the soil can decrease Cd effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA