Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 4(5)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597722

RESUMO

Nonmenstrual toxic shock syndrome (nmTSS), linked to TSST-1-producing CC30 Staphylococcus aureus, is the leading manifestation of toxic shock syndrome (TSS). Due to case rarity and a lack of tractable animal models, TSS pathogenesis is poorly understood. We developed an S. aureus abscess model in HLA class II transgenic mice to investigate pathogenesis and treatment. TSST-1 sensitivity was established using murine spleen cell proliferation assays and cytokine assays following TSST-1 injection in vivo HLA-DQ8 mice were infected subcutaneously with a tst-positive CC30 methicillin-sensitive S. aureus clinical TSS-associated isolate. Mice received intraperitoneal flucloxacillin, clindamycin, flucloxacillin and clindamycin, or a control reagent. Abscess size, bacterial counts, TSST-1 expression, and TSST-1 bioactivity were measured in tissues. Antibiotic effects were compared with the effects of control reagent. Purified TSST-1 expanded HLA-DQ8 T-cell Vß subsets 3 and 13 in vitro and instigated cytokine release in vivo, confirming TSST-1 sensitivity. TSST-1 was detected in abscesses (0 to 8.0 µg/ml) and draining lymph nodes (0 to 0.2 µg/ml) of infected mice. Interleukin 6 (IL-6), gamma interferon (IFN-γ), KC (CXCL1), and MCP-1 were consistent markers of inflammation during infection. Clindamycin-containing antibiotic regimens reduced abscess size and TSST-1 production. Infection led to detectable TSST-1 in soft tissues, and TSST-1 was detected in draining lymph nodes, events which may be pivotal to TSS pathogenesis. The reduction in TSST-1 production and lesion size after a single dose of clindamycin underscores a potential role for adjunctive clindamycin at the start of treatment of patients suspected of having TSS to alter disease progression.IMPORTANCE Staphylococcal toxic shock syndrome (TSS) is a life-threatening illness causing fever, rash, and shock, attributed to toxins produced by the bacterium Staphylococcus aureus, mainly toxic shock syndrome toxin 1 (TSST-1). TSS was in the past commonly linked with menstruation and high-absorbency tampons; now, TSS is more frequently triggered by other staphylococcal infections, particularly of skin and soft tissue. Investigating the progress and treatment of TSS in patients is challenging, as TSS is rare; animal models do not mimic TSS adequately, as toxins interact best with human immune cells. We developed a new model of staphylococcal soft tissue infection in mice producing human immune cell proteins, rendering them TSST-1 sensitive, to investigate TSS. The significance of our research was that TSST-1 was found in soft tissues and immune organs of mice and that early treatment of mice with the antibiotic clindamycin altered TSST-1 production. Therefore, the early treatment of patients suspected of having TSS with clindamycin may influence their response to treatment.


Assuntos
Antibacterianos/uso terapêutico , Toxinas Bacterianas/genética , Enterotoxinas/genética , Choque Séptico/microbiologia , Infecções dos Tecidos Moles/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Superantígenos/genética , Animais , Citocinas , Modelos Animais de Doenças , Feminino , Antígenos HLA-DQ/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Choque Séptico/tratamento farmacológico , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
2.
Indian J Crit Care Med ; 14(3): 147-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21253349

RESUMO

Toxic shock syndrome (TSS) is a serious, potentially life-threatening condition resulting from an overwhelming immunological response to an exotoxin released by Staphylococcus aureus and group A streptococci. High index of suspicion, early diagnosis and aggressive therapeutic measures must be instituted in view of high mortality of the TSS. In recent years, new agents have been tested to reduce morbidity and mortality in patients with severe sepsis, in addition to standard supportive measures. Among them, recombinant human activated protein C (rhAPC) has been reported to significantly reduce mortality and morbidity in patients with severe sepsis and two or more acute organ failures. We describe our experience with this drug in the early reversal of septic shock from TSS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA