Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Affect Disord ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173920

RESUMO

Psychiatric disorders exhibit a shared neuropathology, yet the diverse presentations among patients necessitate the identification of transdiagnostic subtypes to enhance diagnostic and treatment strategies. This study aims to unveil potential transdiagnostic subtypes based on personalized gray matter morphological abnormalities. A total of 496 patients with psychiatric disorders and 255 healthy controls (HCs) from three distinct datasets (one for discovery and two for validation) were enrolled. Individualized gray matter morphological abnormalities were determined using normative modeling to identify transdiagnostic subtypes. In the discovery dataset, two transdiagnostic subtypes with contrasting patterns of structural abnormalities compared to HCs were identified. Reproducibility and generalizability analyses demonstrated that these subtypes could be generalized to new patients and even to new disorders in the validation datasets. These subtypes were characterized by distinct disease epicenters. The gray matter abnormal pattern in subtype 1 was mainly linked to excitatory receptors, whereas subtype 2 showed a predominant association with inhibitory receptors. Furthermore, we observed that the gray matter abnormal pattern in subtype 2 was correlated with transcriptional profiles of inflammation-related genes, while subtype 1 did not show this association. Our findings reveal two robust transdiagnostic biotypes, offering novel insights into psychiatric nosology.

2.
ArXiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010871

RESUMO

INTRODUCTION: Previous studies have applied normative modeling on a single neuroimaging modality to investigate Alzheimer Disease (AD) heterogeneity. We employed a deep learning-based multimodal normative framework to analyze individual-level variation across ATN (amyloid-tau-neurodegeneration) imaging biomarkers. METHODS: We selected cross-sectional discovery (n = 665) and replication cohorts (n = 430) with available T1-weighted MRI, amyloid and tau PET. Normative modeling estimated individual-level abnormal deviations in amyloid-positive individuals compared to amyloid-negative controls. Regional abnormality patterns were mapped at different clinical group levels to assess intra-group heterogeneity. An individual-level disease severity index (DSI) was calculated using both the spatial extent and magnitude of abnormal deviations across ATN. RESULTS: Greater intra-group heterogeneity in ATN abnormality patterns was observed in more severe clinical stages of AD. Higher DSI was associated with worse cognitive function and increased risk of disease progression. DISCUSSION: Subject-specific abnormality maps across ATN reveal the heterogeneous impact of AD on the brain.

3.
Schizophr Bull ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970378

RESUMO

BACKGROUND: Clinical forecasting models have potential to optimize treatment and improve outcomes in psychosis, but predicting long-term outcomes is challenging and long-term follow-up data are scarce. In this 10-year longitudinal study, we aimed to characterize the temporal evolution of cortical correlates of psychosis and their associations with symptoms. DESIGN: Structural magnetic resonance imaging (MRI) from people with first-episode psychosis and controls (n = 79 and 218) were obtained at enrollment, after 12 months (n = 67 and 197), and 10 years (n = 23 and 77), within the Thematically Organized Psychosis (TOP) study. Normative models for cortical thickness estimated on public MRI datasets (n = 42 983) were applied to TOP data to obtain deviation scores for each region and timepoint. Positive and Negative Syndrome Scale (PANSS) scores were acquired at each timepoint along with registry data. Linear mixed effects models assessed effects of diagnosis, time, and their interactions on cortical deviations plus associations with symptoms. RESULTS: LMEs revealed conditional main effects of diagnosis and time × diagnosis interactions in a distributed cortical network, where negative deviations in patients attenuate over time. In patients, symptoms also attenuate over time. LMEs revealed effects of anterior cingulate on PANSS total, and insular and orbitofrontal regions on PANSS negative scores. CONCLUSIONS: This long-term longitudinal study revealed a distributed pattern of cortical differences which attenuated over time together with a reduction in symptoms. These findings are not in line with a simple neurodegenerative account of schizophrenia, and deviations from normative models offer a promising avenue to develop biomarkers to track clinical trajectories over time.

4.
Neuroimage Clin ; 43: 103624, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38823248

RESUMO

Over the past decades, morphometric analysis of brain MRI has contributed substantially to the understanding of healthy brain structure, development and aging as well as to improved characterisation of disease related pathologies. Certified commercial tools based on normative modeling of these metrics are meanwhile available for diagnostic purposes, but they are cost intensive and their clinical evaluation is still in its infancy. Here we have compared the performance of "ScanOMetrics", an open-source research-level tool for detection of statistical anomalies in individual MRI scans, depending on whether it is operated on the output of FreeSurfer or of the deep learning based brain morphometry tool DL + DiReCT. When applied to the public OASIS3 dataset, containing patients with Alzheimer's disease (AD) and healthy controls (HC), cortical thickness anomalies in patient scans were mainly detected in regions that are known as predilection areas of cortical atrophy in AD, regardless of the software used for extraction of the metrics. By contrast, anomaly detections in HCs were up to twenty-fold reduced and spatially unspecific using both DL + DiReCT and FreeSurfer. Progression of the atrophy pattern with clinical dementia rating (CDR) was clearly observable with both methods. DL + DiReCT provided results in less than 25 min, more than 15 times faster than FreeSurfer. This difference in computation time might be relevant when considering application of this or similar methodology as diagnostic decision support for neuroradiologists.

5.
Psychol Med ; : 1-11, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804091

RESUMO

BACKGROUND: Mood disorders are characterized by great heterogeneity in clinical manifestation. Uncovering such heterogeneity using neuroimaging-based individual biomarkers, clinical behaviors, and genetic risks, might contribute to elucidating the etiology of these diseases and support precision medicine. METHODS: We recruited 174 drug-naïve and drug-free patients with major depressive disorder and bipolar disorder, as well as 404 healthy controls. T1 MRI imaging data, clinical symptoms, and neurocognitive assessments, and genetics were obtained and analyzed. We applied regional gray matter volumes (GMV) and quantile normative modeling to create maturation curves, and then calculated individual deviations to identify subtypes within the patients using hierarchical clustering. We compared the between-subtype differences in GMV deviations, clinical behaviors, cell-specific transcriptomic associations, and polygenic risk scores. We also validated the GMV deviations based subtyping analysis in a replication cohort. RESULTS: Two subtypes emerged: subtype 1, characterized by increased GMV deviations in the frontal cortex, cognitive impairment, a higher genetic risk for Alzheimer's disease, and transcriptionally associated with Alzheimer's disease pathways, oligodendrocytes, and endothelial cells; and subtype 2, displaying globally decreased GMV deviations, more severe depressive symptoms, increased genetic vulnerability to major depressive disorder and transcriptionally related to microglia and inhibitory neurons. The distinct patterns of GMV deviations in the frontal, cingulate, and primary motor cortices between subtypes were shown to be replicable. CONCLUSIONS: Our current results provide vital links between MRI-derived phenotypes, spatial transcriptome, genetic vulnerability, and clinical manifestation, and uncover the heterogeneity of mood disorders in biological and behavioral terms.

6.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712293

RESUMO

Introduction: Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods: Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results: In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion: We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38679325

RESUMO

BACKGROUND: Human healthy and pathological aging is linked to a steady decline in brain resting-state activity and connectivity measures. The neurophysiological mechanisms that underlie these changes remain poorly understood. METHODS: Making use of recent developments in normative modeling and availability of in vivo maps for various neurochemical systems, we tested in the UK Biobank cohort (n = 25,917) whether and how age- and Parkinson's disease-related resting-state changes in commonly applied local and global activity and connectivity measures colocalize with underlying neurotransmitter systems. RESULTS: We found that the distributions of several major neurotransmitter systems including serotonergic, dopaminergic, noradrenergic, and glutamatergic neurotransmission correlated with age-related changes across functional activity and connectivity measures. Colocalization patterns in Parkinson's disease deviated from normative aging trajectories for these, as well as for cholinergic and GABAergic (gamma-aminobutyric acidergic) neurotransmission. The deviation from normal colocalization of brain function and GABAA correlated with disease duration. CONCLUSIONS: These findings provide new insights into molecular mechanisms underlying age- and Parkinson's-related brain functional changes by extending the existing evidence elucidating the vulnerability of specific neurochemical attributes to normal aging and Parkinson's disease. The results particularly indicate that alongside dopamine and serotonin, increased vulnerability of glutamatergic, cholinergic, and GABAergic systems may also contribute to Parkinson's disease-related functional alterations. Combining normative modeling and neurotransmitter mapping may aid future research and drug development through deeper understanding of neurophysiological mechanisms that underlie specific clinical conditions.

8.
Alzheimers Dement (Amst) ; 16(1): e12559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487076

RESUMO

INTRODUCTION: Overlooking the heterogeneity in Alzheimer's disease (AD) may lead to diagnostic delays and failures. Neuroanatomical normative modeling captures individual brain variation and may inform our understanding of individual differences in AD-related atrophy. METHODS: We applied neuroanatomical normative modeling to magnetic resonance imaging from a real-world clinical cohort with confirmed AD (n = 86). Regional cortical thickness was compared to a healthy reference cohort (n = 33,072) and the number of outlying regions was summed (total outlier count) and mapped at individual- and group-levels. RESULTS: The superior temporal sulcus contained the highest proportion of outliers (60%). Elsewhere, overlap between patient atrophy patterns was low. Mean total outlier count was higher in patients who were non-amnestic, at more advanced disease stages, and without depressive symptoms. Amyloid burden was negatively associated with outlier count. DISCUSSION: Brain atrophy in AD is highly heterogeneous and neuroanatomical normative modeling can be used to explore anatomo-clinical correlations in individual patients.

9.
Res Child Adolesc Psychopathol ; 52(7): 1063-1074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38483760

RESUMO

Understanding atypicalities in ADHD brain correlates is a step towards better understanding ADHD etiology. Efforts to map atypicalities at the level of brain structure have been hindered by the absence of normative reference standards. Recent publication of brain charts allows for assessment of individual variation relative to age- and sex-adjusted reference standards and thus estimation not only of case-control differences but also of intraindividual prediction. METHODS: Aim was to examine, whether brain charts can be applied in a sample of adolescents (N = 140, 38% female) to determine whether atypical brain subcortical and total volumes are associated with ADHD at-risk status and severity of parent-rated symptoms, accounting for self-rated anxiety and depression, and parent-rated oppositional defiant disorder (ODD) as well as motion. RESULTS: Smaller bilateral amygdala volume was associated with ADHD at-risk status, beyond effects of comorbidities and motion, and smaller bilateral amygdala volume was associated with inattention and hyperactivity/impulsivity, beyond effects of comorbidities except for ODD symptoms, and motion. CONCLUSIONS: Individual differences in amygdala volume meaningfully add to estimating ADHD risk and severity. Conceptually, amygdalar involvement is consistent with behavioral and functional imaging data on atypical reinforcement sensitivity as a marker of ADHD-related risk. Methodologically, results show that brain chart reference standards can be applied to address clinically informative, focused and specific questions.


Assuntos
Tonsila do Cerebelo , Transtorno do Deficit de Atenção com Hiperatividade , Imageamento por Ressonância Magnética , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Feminino , Adolescente , Masculino , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Índice de Gravidade de Doença , Comorbidade , Padrões de Referência , Criança , Transtornos de Deficit da Atenção e do Comportamento Disruptivo/epidemiologia
10.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370817

RESUMO

This study introduces the Deep Normative Tractometry (DNT) framework, that encodes the joint distribution of both macrostructural and microstructural profiles of the brain white matter tracts through a variational autoencoder (VAE). By training on data from healthy controls, DNT learns the normative distribution of tract data, and can delineate along-tract micro-and macro-structural abnormalities. Leveraging a large sample size via generative pre-training, we assess DNT's generalizability using transfer learning on data from an independent cohort acquired in India. Our findings demonstrate DNT's capacity to detect widespread diffusivity abnormalities along tracts in mild cognitive impairment and Alzheimer's disease, aligning closely with results from the Bundle Analytics (BUAN) tractometry pipeline. By incorporating tract geometry information, DNT may be able to distinguish disease-related abnormalities in anisotropy from tract macrostructure, and shows promise in enhancing fine-scale mapping and detection of white matter alterations in neurodegenerative conditions.

11.
Front Neurosci ; 18: 1334508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379757

RESUMO

Objectives: The diverse nature of stroke necessitates individualized assessment, presenting challenges to case-control neuroimaging studies. The normative model, measuring deviations from a normal distribution, provides a solution. We aim to evaluate stroke-induced white matter microstructural abnormalities at group and individual levels and identify potential prognostic biomarkers. Methods: Forty-six basal ganglia stroke patients and 46 healthy controls were recruited. Diffusion-weighted imaging and clinical assessment were performed within 7 days after stroke. We used automated fiber quantification to characterize intergroup alterations of segmental diffusion properties along 20 fiber tracts. Then each patient was compared to normative reference (46 healthy participants) by Mahalanobis distance tractometry for 7 significant fiber tracts. Mahalanobis distance-based deviation loads (MaDDLs) and fused MaDDLmulti were extracted to quantify individual deviations. We also conducted correlation and logistic regression analyses to explore relationships between MaDDL metrics and functional outcomes. Results: Disrupted microstructural integrity was observed across the left corticospinal tract, bilateral inferior fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral thalamic radiation, and right uncinate fasciculus. The correlation coefficients between MaDDL metrics and initial functional impairment ranged from 0.364 to 0.618 (p < 0.05), with the highest being MaDDLmulti. Furthermore, MaDDLmulti demonstrated a significant enhancement in predictive efficacy compared to MaDDL (integrated discrimination improvement [IDI] = 9.62%, p = 0.005) and FA (IDI = 34.04%, p < 0.001) of the left corticospinal tract. Conclusion: MaDDLmulti allows for assessing behavioral disorders and predicting prognosis, offering significant implications for personalized clinical decision-making and stroke recovery. Importantly, our method demonstrates prospects for widespread application in heterogeneous neurological diseases.

12.
Biol Psychiatry ; 95(5): 403-413, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579934

RESUMO

BACKGROUND: The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of gray matter volume. METHODS: We enrolled 1092 participants, including 187 patients with depression and 905 healthy control participants. Structural magnetic resonance imaging data of healthy control participants from the Human Connectome Project (n = 510) and REST-meta-MDD Project (n = 229) were used to establish a normative model across the life span in adults 18 to 65 years old for each brain region. Deviations from the normative range for 187 patients and 166 healthy control participants recruited from two local hospitals were captured as normative probability maps, which were used to identify the disease risk and treatment-related latent factors. RESULTS: In contrast to case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual normative probability maps (area under the receiver operating characteristic curve range, 0.7146-0.7836) showed better performance than models trained with original gray matter volume values (area under the receiver operating characteristic curve range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on normative probability maps, suggesting distinct treatment response and inclination. CONCLUSIONS: Capturing personalized deviations from a normative range could help in understanding the heterogeneous neurobiology of depression and thus guide clinical diagnosis and treatment of depression.


Assuntos
Encéfalo , Depressão , Humanos , Adulto , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Teorema de Bayes , Depressão/diagnóstico por imagem , Depressão/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38130873

RESUMO

Normative modelling is a method for understanding the underlying heterogeneity within brain disorders like Alzheimer Disease (AD), by quantifying how each patient deviates from the expected normative pattern that has been learned from a healthy control distribution. Existing deep learning based normative models have been applied on only single modality Magnetic Resonance Imaging (MRI) neuroimaging data. However, these do not take into account the complementary information offered by multimodal M RI, which is essential for understanding a multifactorial disease like AD. To address this limitation, we propose a multi-modal variational autoencoder (mmVAE) based normative modelling framework that can capture the joint distribution between different modalities to identify abnormal brain volume deviations due to AD. Our multi-modal framework takes as input Freesurfer processed brain region volumes from T1-weighted (cortical and subcortical) and T2-weighed (hippocampal) scans of cognitively normal participants to learn the morphological characteristics of the healthy brain. The estimated normative model is then applied on AD patients to quantify the deviation in brain volumes and identify abnormal brain pattern deviations due to the progressive stages of AD. We compared our proposed mmVAE with a baseline unimodal VAE having a single encoder and decoder and the two modalities concatenated as unimodal input. Our experimental results show that deviation maps generated by mmVAE are more sensitive to disease staging within AD, have a better correlation with patient cognition and result in higher number of brain regions with statistically significant deviations compared to the unimodal baseline model.

14.
Curr Biol ; 33(22): 4960-4979.e7, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37918398

RESUMO

In selecting appropriate behaviors, animals should weigh sensory evidence both for and against specific beliefs about the world. For instance, animals measure optic flow to estimate and control their own rotation. However, existing models of flow detection can be spuriously triggered by visual motion created by objects moving in the world. Here, we show that stationary patterns on the retina, which constitute evidence against observer rotation, suppress inappropriate stabilizing rotational behavior in the fruit fly Drosophila. In silico experiments show that artificial neural networks (ANNs) that are optimized to distinguish observer movement from external object motion similarly detect stationarity and incorporate negative evidence. Employing neural measurements and genetic manipulations, we identified components of the circuitry for stationary pattern detection, which runs parallel to the fly's local motion and optic-flow detectors. Our results show how the fly brain incorporates negative evidence to improve heading stability, exemplifying how a compact brain exploits geometrical constraints of the visual world.


Assuntos
Percepção de Movimento , Fluxo Óptico , Animais , Movimento , Rotação , Drosophila , Estimulação Luminosa/métodos
15.
Biol Psychiatry Glob Open Sci ; 3(2): 255-263, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124356

RESUMO

Background: Adolescence hosts a sharp increase in the incidence of mental disorders. The prodromal phases are often characterized by cognitive deficits that predate disease onset by several years. Characterization of cognitive performance in relation to normative trajectories may have value for early risk assessment and monitoring. Methods: Youth aged 8 to 21 years (N = 6481) from the Philadelphia Neurodevelopmental Cohort were included. Performance scores from a computerized neurocognitive battery were decomposed using principal component analysis, yielding a general cognitive score. Items reflecting various aspects of psychopathology from self-report questionnaires and collateral caregiver information were decomposed using independent component analysis, providing individual domain scores. Using normative modeling and Bayesian statistics, we estimated normative trajectories of cognitive function and tested for associations between cognitive deviance and psychopathological domain scores. In addition, we tested for associations with polygenic scores for mental and behavioral disorders often involving cognition, including schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, and Alzheimer's disease. Results: More negative normative cognitive deviations were associated with higher general psychopathology burden and domains reflecting positive and prodromal psychosis, attention problems, norm-violating behavior, and anxiety. In addition, better performance was associated with higher joint burden of depression, suicidal ideation, and negative psychosis symptoms. The analyses revealed no evidence for associations with polygenic scores. Conclusions: Our results show that cognitive performance is associated with general and specific domains of psychopathology in youth. These findings support the close links between cognition and psychopathology in youth and highlight the potential of normative modeling for early risk assessment.

16.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205539

RESUMO

Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cerebral cortex development unfolds along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of variance associated with regional cortical thickness trajectories. Adult cortical change patterns are best explained by cholinergic and glutamatergic neurotransmission. These relationships are supported by developmental gene expression trajectories and translate to longitudinal data from over 8,000 adolescents, explaining up to 59% of developmental change at population- and 18% at single-subject level. Integrating multilevel brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand typical and atypical brain development in living humans.

17.
Cereb Cortex ; 33(14): 8921-8941, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254801

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.


Assuntos
Síndrome de Down , Substância Branca , Recém-Nascido , Criança , Humanos , Síndrome de Down/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
18.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711551

RESUMO

Importance: The lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in the majority of individuals at psychosis risk may be nested within the range observed in healthy individuals. Objective: To quantify deviations from the normative range of neuroanatomical variation in individuals at clinical high-risk for psychosis (CHR-P) and evaluate their overlap with healthy variation and their association with positive symptoms, cognition, and conversion to a psychotic disorder. Design Setting and Participants: Clinical, IQ and FreeSurfer-derived regional measures of cortical thickness (CT), cortical surface area (SA), and subcortical volume (SV) from 1,340 CHR-P individuals [47.09% female; mean age: 20.75 (4.74) years] and 1,237 healthy individuals [44.70% female; mean age: 22.32 (4.95) years] from 29 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. Main Outcomes and Measures: For each regional morphometric measure, z-scores were computed that index the degree of deviation from the normative means of that measure in a healthy reference population (N=37,407). Average deviation scores (ADS) for CT, SA, SV, and globally across all measures (G) were generated by averaging the respective regional z-scores. Regression analyses were used to quantify the association of deviation scores with clinical severity and cognition and two-proportion z-tests to identify case-control differences in the proportion of individuals with infranormal (z<-1.96) or supranormal (z>1.96) scores. Results: CHR-P and healthy individuals overlapped in the distributions of the observed values, regional z-scores, and all ADS vales. The proportion of CHR-P individuals with infranormal or supranormal values in any metric was low (<12%) and similar to that of healthy individuals. CHR-P individuals who converted to psychosis compared to those who did not convert had a higher percentage of infranormal values in temporal regions (5-7% vs 0.9-1.4%). In the CHR-P group, only the ADSSA showed significant but weak associations (|ß|<0.09; PFDR<0.05) with positive symptoms and IQ. Conclusions and Relevance: The study findings challenge the usefulness of macroscale neuromorphometric measures as diagnostic biomarkers of psychosis risk and suggest that such measures do not provide an adequate explanation for psychosis risk.

19.
Psychol Med ; 53(9): 4012-4021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35450543

RESUMO

BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Agressão/psicologia , Emoções , Transtornos de Deficit da Atenção e do Comportamento Disruptivo , Mapeamento Encefálico
20.
Schizophr Bull ; 49(1): 43-52, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36318234

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia manifests with marked heterogeneity in both clinical presentation and underlying biology. Modeling individual differences within clinical cohorts is critical to translate knowledge reliably into clinical practice. We hypothesized that individualized brain atrophy in patients with schizophrenia may explain the heterogeneous outcomes of repetitive transcranial magnetic stimulation (rTMS). STUDY DESIGN: The magnetic resonance imaging (MRI) data of 797 healthy subjects and 91 schizophrenia patients (between January 1, 2015, and December 31, 2020) were retrospectively selected from our hospital database. The healthy subjects were used to establish normative reference ranges for cortical thickness as a function of age and sex. Then, a schizophrenia patient's personalized atrophy map was computed as vertex-wise deviations from the normative model. Each patient's atrophy network was mapped using resting-state functional connectivity MRI from a subgroup of healthy subjects (n = 652). In total 52 of the 91 schizophrenia patients received rTMS in a randomized clinical trial (RCT). Their longitudinal symptom changes were adopted to test the clinical utility of the personalized atrophy map. RESULTS: The personalized atrophy maps were highly heterogeneous across patients, but functionally converged to a putative schizophrenia network that comprised regions implicated by previous group-level findings. More importantly, retrospective analysis of rTMS-RCT data indicated that functional connectivity of the personalized atrophy maps with rTMS targets was significantly associated with the symptom outcomes of schizophrenia patients. CONCLUSIONS: Normative modeling can aid in mapping the personalized atrophy network associated with treatment outcomes of patients with schizophrenia.


Assuntos
Encéfalo , Esquizofrenia , Humanos , Estimulação Magnética Transcraniana/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Esquizofrenia/complicações , Imageamento por Ressonância Magnética/métodos , Atrofia/complicações , Atrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA