Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Manage ; 368: 122164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142104

RESUMO

Digestates from low-tech digesters need to be post-treated to ensure their safe agricultural reuse. This study evaluated, for the first time, vermifiltration as a post-treatment for the digestate from a low-tech digester implemented in a small-scale farm, treating cattle manure and cheese whey under psychrophilic conditions. Vermifiltration performance was monitored in terms of solids, organic matter, nutrients, and pathogens removal efficiency. In addition, the growth of earthworms (Eisenia foetida) and their role in the process was evaluated. Finally, the vermicompost and the effluent of the vermifilter were characterized in order to assess their potential reuse in agriculture. Vermifilters showed high removal efficiency of chemical oxygen demand (55-90%), total solids (60-80%), ammonium nitrogen (83-97%), and phosphate-P (28-49%). Earthworms effectively grew and reproduced on digestate (i.e. earthworms number increased by 183%), enhancing the vermifiltration performance, while reducing clogging and odour-related issues. Both the vermicompost and effluent produced complied with legislation limits established for soil improvers and wastewater for fertigation, respectively. Indeed, there was an absence of pathogens and non-detectable heavy metals concentrations. Vermifiltration may be thus considered a suitable post-treatment option for the digestate from low-tech digesters, allowing for its safe agricultural reuse and boosting the circular bioeconomy in small-scale farms.


Assuntos
Agricultura , Esterco , Oligoquetos , Animais , Fazendas , Solo , Bovinos , Análise da Demanda Biológica de Oxigênio , Filtração , Águas Residuárias/química
2.
J Environ Manage ; 366: 121753, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981265

RESUMO

Globally, nutrient pollution is a serious and challenging concern. Wastewater treatment plants (WWTPs) are designed to prevent the discharge of contaminants resulting from anthropogenic sources to the receiving water bodies. In this study, seasonal nutrient pollution load, and biological nutrient removal efficiency of an anoxic aerobic unit based WWTP were investigated. Seasonal assessment revealed that the average total nitrogen removal efficiency and total phosphorus removal efficiency of the WWTP do not meet the discharge standard of 10 mg/L and 1 mg/L, respectively. Furthermore, the WWTP does not utilize the energy contained in the wastewater. In this regard, dual chamber MFC (D-MFC) has emerged as a promising solution that can not only treat wastewater but can also convert chemical energy present in the wastewater into electrical energy. However, higher N O3- (57 ± 4 mg/L) and P-P O43- (6 ± 0.52 mg/L) concentration in cathodic effluent is a major drawback in D-MFC. Therefore, to solve this issue, D-MFC was transformed into a microbial nutrient recovery cell (MNRC) which demonstrated a final N H4+-N and P-P O43- concentration of nearly 1 mg/L with N H4+-N and P-P O43- recovery up to 74 % and 69 %, respectively in the recovery chamber. Besides, MNRC attained a maximum power density of 307 mW/m3 and a current density of 1614 mA/m3, thus indicating MNRC is an eco-friendly, energy-neutral, and promising technology for electricity generation and recovering nutrients.


Assuntos
Nitrogênio , Nutrientes , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
3.
J Environ Manage ; 356: 120585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508011

RESUMO

Digestate processing is a strategy to improve the management of digestate from biogas plants. Solid-liquid separation is usually the primary step and can be followed by advanced treatments of the fractions. The knowledge about the performance of the separators and the quality of the fractions is scattered because of many available techniques and large variability in digestate characteristics. We performed a systematic review and found 175 observations of full-scale solid-liquid separation of digestate. We identified 4 separator groups, 4 digestate classes based on substrate, and distinguished whether chemical conditioners were used. We confirmed the hypothesis that the dominant substrate can affect the efficiency of the digestate separation. Furthermore, the results showed that centrifuges separated significantly more dry matter and total P than screw presses. Use of chemical conditioners in combination with a centrifuge lowered the dry matter concentration in the liquid fraction by 30%. Screw presses consumed 4.5 times less energy than centrifuges and delivered 3.3 tonne ammonium N in the liquid fraction and 0.3 tonne total P in the solid fraction using 1 MWh. The results can provide data for systems analyses of biogas solutions and can support practitioners when choosing among full-scale separator techniques depending on the digestate type. In a broader perspective, this work contributes to the continuous improvement of biogas plants operations and to their role as nutrients recovery sites.


Assuntos
Biocombustíveis , Fracionamento Químico , Fracionamento Químico/métodos , Gerenciamento de Resíduos
4.
Bioengineering (Basel) ; 11(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391631

RESUMO

This study investigated the synergistic integration of clean technologies, specifically anaerobic digestion (AD) and struvite precipitation, to enhance nutrient recovery from chicken manure (CM). The batch experiments were conducted using (i) anaerobically digested CM digestate, referred to as raw sample (RS), (ii) filtered digestate sample (FS), and (iii) a synthetically prepared control sample (CS). The research findings demonstrated that the initial ammonia concentration variations did not significantly impact the struvite precipitation yield in the RS and FS, showcasing the materials inertness process's robustness to changing ammonia concentrations. Notably, the study revealed that the highest nitrogen (N) recovery, associated with 86% and 88% ammonia removal in the CS and FS, was achieved at pH 11, underscoring the efficiency of nutrient recovery. The RS achieved the highest nitrogen recovery efficiency at pH 10, at 86.3%. In addition, the research highlighted the positive impact of reducing heavy metal levels (Zn, Cu, Pb, Ni, Cd, Cr and Fe) and improving the composition of the microbial community in the digestate. These findings offer valuable insights into sustainable manure and nutrient management practices, emphasizing the potential benefits for the agricultural sector and the broader circular economy. Future research directions include economic viability assessments, regulatory compliance evaluations, and knowledge dissemination to promote the widespread adoption of these clean technologies on a larger scale. The study marks a significant step toward addressing the environmental concerns associated with poultry farming and underscores the potential of integrating clean technologies for a more sustainable agricultural future.

5.
Sci Total Environ ; 914: 169862, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185141

RESUMO

Water shortages, exacerbated by climate change, are posing a major global challenge, particularly impacting the agricultural sector. A growing interest is raised towards reclaimed wastewater (RWW) as an alternative irrigation source, capable of exploiting also the nutrient content through the fertigation practice. However, a prioritization methodology for selecting the most appropriate wastewater treatment plants (WWTPs) for implementing direct RWW reuse is currently missing. Such prioritization would benefit water utilities, often managing several WWTPs, and policymakers in optimizing economic asset allocation. In this work, a prioritization framework is proposed to evaluate WWTPs' suitability for implementing direct RWW reuse considering both WWTP and surrounding territory characteristics. This procedure consists of four key steps. Firstly, a techno-economic model was developed, in which monthly mass balances on water and nutrients are solved by matching crop requirements, rainfall conditions, and effluent characteristics. Economic suitability was quantified considering economic benefits due to savings in freshwater resource, mineral fertilizers and avoided greenhouse gases emissions, but also losses in crop yield due to RWW salinity content. Secondly, a classification procedure was coded to select representative WWTPs among a set of WWTPs, based on their size, presence of nutrient removal processes, and type of crops in their surroundings. The techno-economic model was then applied to these selected WWTPs. Thirdly, input parameters' relevance in determining WWTP suitability for RWW reuse was ranked. Finally, scenario analyses were conducted to study the influence of rainfall patterns and nutrient treatment removal on the RWW reuse feasibility. The type of crops surrounding the WWTPs and RWW salinity content resulted to be crucial elements in determining WWTPs suitability for RWW reuse implementation. The proposed methodology proved to be an effective support tool for policymakers and water utilities to assess the techno-economic feasibility of direct RWW reuse, generalizing results to several combinations of WWTPs and crops.

6.
Sci Total Environ ; 904: 166878, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678521

RESUMO

Microalgae can produce biostimulants in form of phytohormones, which are compounds that, even if applied in low concentrations, can have stimulant effects on plants growth and can enhance their quality and their resistance to stress. Considering that microalgal biomass can grow recovering nutrients from wastewater, this circular approach allows to use residues for the production of high added value compounds (such as phytohormones) at low cost. The interest on biostimulants production from microalgae have recently raised. Scientists are focused on the direct application of these cellular extracts on plants, while the number of studies on the identification of bioactive molecules, such as phytohormones, is very scarce. Two cyanobacteria strains (Synechocystis sp. (SY) and Phormidium sp. (PH)) and a chlorophyte (Scenedesmus sp. (SC)) were cultured in laboratory-scale PBRs with a working volume of 2.5 L in secondary urban wastewater varying N:P ratio in the cultures to obtain the highest productivity. The variation of N:P ratio affects microalgae growth, and SY and PH presented higher productivities (73 and 48 mg L-1 d, respectively) under higher N:P ratio (> 22:1). Microalgal biomass was freeze-dried and phytohormones content was measured with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The three microalgae showed similar phytohormones profiles, being the auxin (indole-3-acetic acid, IAA) the most abundant (72 ng g-1DW in SY). Proteins were major macronutrient for all strains, reaching 48 %DW in PH culture. To optimize the biostimulants production, a balance between the production of such compounds, biomass productivity and nutrients removal should be taken into consideration. In this sense, SC was the most promising strain, showing the highest N and P removal rates (73 % and 59 %, respectively) while producing phytohormones.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nutrientes/análise , Biomassa , Nitrogênio/análise , Biocombustíveis/análise
7.
Sci Total Environ ; 874: 162548, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870507

RESUMO

Livestock slurry has been reported to be a potential secondary raw material as it contains macronutrients ­nitrogen, phosphorus and potassium-, which could be valorised as high-quality fertilizers if proper separation and concentration of valuable compounds is performed. In this work, pig slurry liquid fraction was assessed for nutrient recovery and valorisation as fertilizer. Some indicators were used to evaluate the performance of proposed train of technologies within the framework of circular economy. As ammonium and potassium species are highly soluble at the whole pH range, a study based on phosphate speciation at pH from 4 to 8 was assessed to improve the macronutrients recovery from the slurry, resulting in two different treatment trains at acidic and alkaline conditions. The acidic treatment system based on centrifugation, microfiltration and forward osmosis was applied to obtain a nutrient-rich liquid organic fertilizer containing 1.3 % N, 1.3 % P2O5 and 1.5 % K2O. The alkaline path of valorisation was composed by centrifugation and stripping by using membrane contactors to produce an organic solid fertilizer -7.7 % N, 8,0 % P2O5 and 2.3 % K2O-, ammonium sulphate solution -1.4 % N- and irrigation water. In terms of circularity indicators, 45.8 % of the initial water content and <50 % of contained nutrients were recovered - 28.3 % N, 43.5 % P2O5 and 46.6 % K2O - in the acidic treatment resulting in 68.68 g fertilizer per kg of treated slurry. 75.1 % of water was recovered as irrigation water and 80.6 % N, 99.9 % P2O5, 83.4 % K2O was valorised in the alkaline treatment, as 219.60 g fertilizer per kg of treated slurry. Treatment paths at acidic and alkaline conditions yield promising results for nutrients recovery and valorisation as the obtained products (nutrient rich organic fertilizer, solid soil amendment and ammonium sulphate solution) fulfil the European Regulation for fertilizers to be potentially used in crop fields.


Assuntos
Fertilizantes , Nitrogênio , Suínos , Animais , Fertilizantes/análise , Sulfato de Amônio , Fósforo , Ácidos , Potássio , Água , Nutrientes
8.
Environ Pollut ; 324: 121399, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878273

RESUMO

In the coming years, the use of microalgal biomass as agricultural biofertilizers has shown promising results. The use of wastewater as culture medium has resulted in the reduction of production costs, making microalgae-based fertilizers highly attractive for farmers. However, the occurrence of specific pollutants in wastewater, like pathogens, heavy metals and contaminants of emerging concern (CECs), such as pharmaceuticals and personal care products may pose a risk on human health. This study presents an holistic assessment of the production and use of microalgal biomass grown in municipal wastewater as biofertilizer in agriculture. Results showed that pathogens and heavy metals concentrations in the microalgal biomass were below the threshold established by the European regulation for fertilizing products, except for cadmium. Regarding CECs, 25 out of 29 compounds were found in wastewater. However, only three of them (hydrocinnamic acid, caffeine, and bisphenol A) were found in the microalgae biomass used as biofertilizer. Agronomic tests were performed for lettuce growth in greenhouse. Four treatments were studied, comparing the use of microalgae biofertilizer with a conventional mineral fertilizer, and also a combination of both of them. Results suggested that microalgae can help reducing the mineral nitrogen dose, since similar fresh shoot weights were obtained in the plants grown with the different assessed fertilizers. Lettuce samples revealed the presence of cadmium and CECs in all the treatments including both negative and positive controls, which suggests that their presence was not linked to the microalgae biomass. On the whole, this study revealed that wastewater grown microalgae can be used for agricultural purposes reducing mineral N need and guaranteeing health safety of the crops.


Assuntos
Metais Pesados , Microalgas , Humanos , Águas Residuárias , Cádmio , Fertilizantes/análise , Agricultura , Biomassa
9.
Bioresour Technol ; 367: 128250, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334866

RESUMO

Purple phototrophic bacteria (PPB) are a novel driver to recover organics and nutrients from wastewater by assimilative growth. Depending on the source, assimilated resources from the PPB biomass can still be recovered after a releasing step. Anaerobic digestion (AD) releases carbonand nutrients, but the release is incomplete. Thermal hydrolysis (TH) as a pretreatment before AD improves the digestibility, release, and subsequent recovery potentials. This work determines the effects of TH in batch and continuous modes regarding methane potential, nutrients' release efficiencies, volatile solids destruction, degradability, and hydrolysis rates. Continuous runs over 165 days (d) confirmed enhanced recovery potentials, achieving up to 380 LCH4/kgVS (83 % solids destruction) and 73 % N release, respectively. The TH pretreatment is energy-intensive, but with appropriate heat recovery and increased methane production in the AD of the pretreated biomass, a combined configuration is energy positive.


Assuntos
Biocombustíveis , Nitrogênio , Hidrólise , Anaerobiose , Proteobactérias , Metano
10.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557880

RESUMO

In this study, the trend of VOCs of dietary fiber samples, coming from three different watermelon cultivars Citrullus lanatus L. (variety Gavina®®, Crimson Sweet, and Asahi Miyako) was investigated. This foodstuff, obtained as a by-product of residual agri-food production, has gained increasing attention because of its many bioactive components and high dietary fiber content. The result is a fibrous material for specific applications in food manufacturing, such as corrector for some functional and technological properties. In this study, a method based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to characterize the aromatic profiles of the dried raw materials. Therefore, the VOCs of the samples of the three cultivars were investigated. Experimental results have shown that watermelon fibers generate VOCs, which can be grouped into six common classes of analytes. The different distributions of the identified compounds made it possible to effectively differentiate the three cultivars studied based on their peculiar aroma profiles. In particular, Gavina®® fiber is distinguished by the high content of terpenes, Asahi Miyako by the presence of aldehydes generated as fatty acid metabolites, and Crimson Sweet by the higher content of acetyl esters.


Assuntos
Citrullus , Compostos Orgânicos Voláteis , Citrullus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Aldeídos/análise , Frutas/química , Microextração em Fase Sólida/métodos , Fibras na Dieta/análise , Compostos Orgânicos Voláteis/análise
11.
Waste Biomass Valorization ; : 1-13, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36212777

RESUMO

In this study, two scenarios of a municipal wastewater treatment plant (WWTP) are presented, which include the integration of the hydrothermal carbonization (HTC) process into the sludge line as a post-treatment of the anaerobic digestion (AD) process. The objective of the simulation is to investigate the performances of AD + HTC treatment to reduce sludge production and improve nutrient and energy recovery. For this purpose, the scheme of an under-construction WWTP was considered, named Trento 3 (Trento, Italy) and with a treatment capacity of 300,000 PE. In the first scenario, the HTC process was fed with thickened sludge from the Trento 3 WWTP, while in the second scenario, dewatered sludge from other local WWTPs was also used as feedstock for the HTC process. Both scenarios allowed to obtain a considerable sludge reduction ranging from 70 to 75% with a notably increase in the biogas production up to 47%, due to the recycling of HTC liquor (HTCL) to the anaerobic digester. Considering nutrients recovery, all the phosphorus and nitrogen present in the HTCL could be used for struvite precipitation with an average yearly gain of 1 million euros. Moreover, the introduction of HTC in the Trento 3 WWTP could allow a reduction in the sludge management costs of up to 2 M€/year.

12.
Bioresour Technol ; 363: 127929, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096330

RESUMO

The study aims to recover nitrogen from wastewater by employing ultrafiltration membrane in water reuse for agriculture purpose. To such aim, a new reclaimed water quality index (RWQI) is proposed and applied including an innovative protocol for its assessment. Specifically, the influence of filtration and backwashing times for an ultrafiltration system aimed to nutrient recovery has been analyzed. The final goal was to pin down the trade-off between operation costs and effluent quality. Results show that backwashing time play a crucial role in reducing the operation costs; indeed, low values (i.e., 0.5 min) lead to an increase in the number of required chemical cleanings and consequently operation costs (namely, up to 0.042 €/m3). The compromise among effluent quality and operation costs has been obtained for 7 min and 1 min, filtration and backwashing, respectively.


Assuntos
Ultrafiltração , Purificação da Água , Membranas Artificiais , Nitrogênio , Nutrientes , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-36078309

RESUMO

This study investigated the effect of locally available bulking agents on the faecal sludge (FS) composting process and quality of the final FS compost. Dewatered FS was mixed with sawdust, coffee husk and brewery waste, and composted on a pilot scale. The evolution of physical and chemical characteristics of the composting materials was monitored weekly. Results indicate that bulking agents have a statistically significant effect (p < 0.0001) on the evolution of composting temperatures, pH, electrical conductivity, nitrogen forms, organic matter mineralisation, total organic carbon, maturity indices, quality of the final compost and composting periods during FS composting. Our results suggest reliable maturity indices for mature and stable FS compost. From the resource recovery perspective, this study suggests sawdust as a suitable bulking agent for co-composting with FS-as it significantly reduced the organic matter losses and nitrogen losses (to 2.2%), and improved the plant growth index, thus improving the agronomic values of the final compost as a soil conditioner. FS co-composting can be considered a sustainable and decentralised treatment option for FS and other organic wastes in the rural and peri-urban communities, especially, where there is a strong practice of reusing organic waste in agriculture.


Assuntos
Compostagem , Carbono , Compostagem/métodos , Nitrogênio , Reciclagem , Esgotos , Solo
14.
Environ Pollut ; 312: 119906, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987290

RESUMO

The area of agricultural wastes valorisation to fertilizers is attracting growing attention because of the increasing fertilizer prices of fertilizers and the higher costs of waste utilization. Despite the scientific and political interest in the concept of circular economy, few studies have considered the practical approach towards the implementation of elaborated technologies. This article outlines innovative strategies for the valorisation of different biobased wastes into fertilizers. The present work makes a significant contribution to the field of new ideas for waste biomass management to recover significant fertilizer nutrients. These results emphasize the importance of the biomass use as a base of renewable resources, which has recently gained special importance, especially in relation to the outbreak of pandemia and war. Broken supply chains and limited access to deposits of raw materials used in fertilizer production (natural gas, potassium salts) meant that now, as never before, it has become more important and feasible to implement the idea of a circular economy and a green deal. We have obtained satisfactory results that demonstrate that appropriate management of biological waste (originating from agriculture, food processing, aquaculture, forest, pharmaceutical industry, and other branches of industry, sewage sludge) will not only reduce environmental nuisance (reducing waste heaps), but will also allow recovery of valuable materials, such as nitrogen (especially valuable amino acids), phosphorus, potassium, microelements, and biologically active substances with properties that stimulate plant growth. The results reported here provide information on production of biobased plant protection products (bioagrochemicals) from agri-food waste. This work reports an overview of biopesticides and biofertilisers production technologies and summarizes their properties and the mechanisms of action.


Assuntos
Fertilizantes , Eliminação de Resíduos , Aminoácidos , Agentes de Controle Biológico , Alimentos , Gás Natural , Nitrogênio , Fósforo , Potássio , Sais , Esgotos/química
15.
J Dairy Sci ; 105(8): 6724-6738, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35787330

RESUMO

At the global level, the quantity of goat milk produced and its gross production value have increased considerably over the last 2 decades. Although many scientific papers on this topic have been published, few studies have been carried out on bulk goat milk samples. The aim of the present study was to investigate in the field the effects of farming system, breed type, individual flock, and stage of production on the composition, coagulation properties (MCP), curd firming over time parameters (CFt), predicted cheese yield (CY%), and nutrient recovery traits (REC) of 432 bulk milk samples from 161 commercial goat farms in Sardinia, Italy. We found that the variance due to individual flock was of the same order as the residual variance for almost all composition and cheesemaking traits. With regard to the fixed effects, the effect of farming system on bulk milk variability was not highly significant for the majority of traits (it was lower than individual flock), whereas the effects of breed type and stage of production were much higher. More specifically, the intensive farms produced milk with the best concentrations of almost all constituents, whereas extensive farms exhibited faster rennet coagulation times, a slower rate of curd firming, lower potential curd firmness, and lower percentages of fat and energy recoveries in the fresh curd. Farms rearing the local breed, Sarda, alone or together with the Maltese breed, produced milk with the best concentrations of fat and protein, superior curd firmness, and better predicted percentage of fresh curd (CYCURD) and recovery traits. The results show the potential of both types of breed, either for their quantitative (specialized breeds) or their qualitative (local breeds) attributes. As expected, the concentrations of fat, protein fractions, and lactose were influenced by the stage of production, with samples collected in the early stage of production (in February and March) having a greater quantity of the main constituents. Somatic cells reached the highest levels in the late stage of production, which corresponds to the goats' advanced stage of lactation (June-July), although no differences were present in the logarithmic bacterial counts between the early and late stages. Regarding cheesemaking potential, bulk milk samples of the late stage were characterized by delayed rennet coagulation and curd firming times, the lowest values of curd firmness, and a general reduction in CY%, and REC traits. In conclusion, we highlight several issues regarding the effects of the most important sources of variation on bulk goat milk, and point to some critical factors relevant for improving dairy goat farming and milk production.


Assuntos
Queijo , Leite , Agricultura , Animais , Fazendas , Feminino , Cabras , Leite/metabolismo
16.
Chemosphere ; 306: 135310, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35714962

RESUMO

Biochar application for the recovery of nutrients from wastewater is a sustainable method based on a circular economy. Wastewater, food wastewater, and stormwater are valuable sources of nutrients (i.e., PO43-, NO3-, and NH4+). The unique properties of biochar, such as its large specific surface area, pH buffering capacity, and ion-exchange ability, make it a cost-effective and environmentally friendly adsorbent. Biochar engineering improves biochar properties and provide targeted adsorbents. The biochar-based fertilizers can be a sustainable alternative to traditional fertilization. The aim of the study was to compare the potential of pristine and engineered biochars to recover nutrients from wastewater and to determine the factors which may affect this process. Engineered biochar can be used as a selective adsorbent from multicomponent solutions. Adsorption on engineered biochar can be also regulated by additional mechanisms: surface precipitation and ligand/ion exchange. Metal modification (e.g. Mg, Fe) enhances PO43- and NO3- adsorption capacity, and thus may provide the extra plant macro-/micronutrients. The desorption mechanism, which is the basis for nutrient release are strongly pH depended. The use of biochar-based fertilizer can have economic and agricultural benefits when using waste materials and reducing pyrolysis energy costs.


Assuntos
Fertilizantes , Águas Residuárias , Adsorção , Carvão Vegetal/química , Fertilizantes/análise , Nutrientes , Águas Residuárias/química
17.
Biotechnol Biofuels Bioprod ; 15(1): 19, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35418145

RESUMO

BACKGROUND: The combined microbial fuel cell-microbial nutrient recovery system has lately been thoroughly explored from an engineering standpoint. The relevance of microbial communities in this process, on the other hand, has been widely underestimated. RESULTS: A lab-scale microbial nutrients recovery system was created in this work, and the microbial community structure was further defined, to give a thorough insight into the important microbial groups in the present system. We reported for the first-time different hybrid anodes of activated carbon and chitosan that were used in the microbial nutrient recovery system for bioenergy production, and, for the removal of COD and recovery of nutrients present in the wastewater. The hybrid anodic materials were studied to adapt electrochemically active bacteria for the recovery of nutrients and energy generation from wastewater without the need for an external source of electricity. The potential of the created hybrid anodes in terms of nutrients recovery, chemical oxygen demand elimination, and energy generation from municipal wastewater was thoroughly examined and compared with each other under similar operating conditions. When the COD loading was 718 mg/L, a total COD removal of ~ 79.2% was achieved with a hybrid activated carbon and chitosan anode having an equal ratio after 10 days of the operation cycle. The maximum power density estimated for hybrid anode (~ 870 mWm-2) was found. CONCLUSION: Overall, this work reveals a schematic self-driven way for the collection and enrichment of nutrients (~ 72.9% phosphorus recovery and ~ 73% ammonium recovery) from municipal wastewater, as well as consistent voltage production throughout the operation.

18.
Sci Total Environ ; 814: 152700, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34973327

RESUMO

Digestate (effluent of biogas plants) became the main bottleneck for biogas industry expansion because it often exceeds the capacity of surrounding croplands as fertilizer. Nutrients recovery from digestate is a promising solution for closing nutrients cycles and generating high value-added byproducts. In fact, numerous nutrients recovery technologies were reported and utilized for that purpose. However, each technology has optimum working conditions, while digestates have different characteristics due to the different substrates, digestion conditions, and handling methods. On the other hand, no protocol has been reported yet for selecting the optimal nutrients recovery technology or sequenced technologies for different digestates regarding their characteristics and the surrounding environmental conditions. In this study, an interactive flowchart was suggested and discussed for selecting the most appropriate technology or sequential techniques among the different alternatives. The whole digestate utilization technologies, solid-liquid separation technologies, liquid and solid processing technologies were included.


Assuntos
Biocombustíveis , Fertilizantes , Anaerobiose , Nutrientes
19.
Bioresour Technol ; 342: 126056, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601027

RESUMO

Conventional wastewater treatment using activated sludge cannot efficiently eliminate nitrogen and phosphorus, thus engendering the risk of water eutrophication and ecosystem disruption. Fortunately, a new wastewater treatment process applying microalgae-bacteria consortia has attracted considerable interests due to its excellent performance of nutrients removal. Moreover, some bacteria facilitate the harvest of microalgal biomass through bio-flocculation. Additionally, while stimulating the functional bacteria, the improved biomass and enriched components also brighten bioenergy production from the perspective of practical applications. Thus, this review first summarizes the current development of nutrients removal and mutualistic interaction using microalgae-bacteria consortia. Then, advancements in bio-flocculation are completely described and the corresponding mechanisms are thoroughly revealed. Eventually, the recent advances of bioenergy production (i.e., biodiesel, biohydrogen, bioethanol, and bioelectricity) using microalgae-bacteria consortia are comprehensively discussed. Together, this review will provide the ongoing challenges and future developmental directions for better converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia.


Assuntos
Microalgas , Bactérias , Biomassa , Ecossistema , Nitrogênio , Fósforo , Águas Residuárias
20.
Water Res ; 204: 117554, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500179

RESUMO

To reduce greenhouse gas emissions and promote resource recovery, many wastewater treatment operators are retrofitting existing plants to implement new technologies for energy, nutrient and carbon recovery. In literature, there is a lack of studies that can unfold the potential environmental and economic impacts of the transition that wastewater utilities are undertaking to transform their treatment plants to water resource recovery facilities (WRRFs). When existing, literature studies are mostly based on simulations rather than real plant data and pilot-scale results. This study combines life cycle assessment and economic evaluations to quantify the environmental and economic impacts of retrofitting an existing wastewater treatment plant (WWTP), which already implements energy recovery, into a full-scale WRRF with a series of novel technologies, the majority of which are already implemented full-scale or tested through pilot-scales. We evaluate five technology alternatives against the current performance of the WWTP: real-time N2O control, biological biogas upgrading coupled with power-to-hydrogen, phosphorus recovery, pre-filtration carbon harvest and enhanced nitrogen removal. Our results show that real-time N2O control, biological biogas upgrading and pre-filtration lead to a decrease in climate change and fossil resource depletion impacts. The implementation of the real-time measurement and control of N2O achieved the highest reduction in direct CO2-eq emissions (-35%), with no significant impacts in other environmental categories. Biological biogas upgrading contributed to counterbalancing direct and indirect climate change impacts by substituting natural gas consumption and production. Pre-filtration increased climate change reduction by 13%, while it increased impacts in other categories. Enhanced sidestream nitrogen removal increased climate change impacts by 12%, but decreased marine eutrophication impacts by 14%. The reserve base resource depletion impacts, however, were the highest in the plant configurations implementing biological biogas upgrading coupled with power-to-hydrogen. Environmental improvements generated economic costs for all alternatives except for real-time N2O control. The results expose possible environmental and economic trade-offs and hotspots of the journey that large wastewater treatment plants will undertake in transitioning into resource recovery facilities in the coming years.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Biocombustíveis , Águas Residuárias , Recursos Hídricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA