Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474912

RESUMO

Modern chemical production processes often emit complex mixtures of gases, including hazardous pollutants such as NO2. Although widely used, gas sensors based on metal oxide semiconductors such as WO3 respond to a wide range of interfering gases other than NO2. Consequently, developing WO3 gas sensors with high NO2 selectivity is challenging. In this study, a simple one-step hydrothermal method was used to prepare WO3 nanorods modified with black phosphorus (BP) flakes as sensitive materials for NO2 sensing, and BP-WO3-based micro-electromechanical system gas sensors were fabricated. The characterization of the as-prepared BP-WO3 composite through X-ray diffraction scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the successful formation of the sandwich-like nanostructures. The result of gas-sensing tests with 2-14 ppm NO2 indicated that the sensor response was 1.25-2.21 with response-recovery times of 36 and 36 s, respectively, at 190 °C. In contrast to pure WO3, which exhibited a response of 1.07-2.2 to 0.3-5 ppm H2S at 160 °C, BP-WO3 showed almost no response to H2S. Thus, compared with pure WO3, BP-WO3 exhibited significantly improved NO2 selectivity. Overall, the BP-WO3 composite with sandwich-like nanostructures is a promising material for developing highly selective NO2 sensors for practical applications.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745400

RESUMO

Metal-organic frameworks (MOFs) have attracted significant research interest for supercapacitor applications due to their high-tunable conductivity and their structure's pore size. In this work, we report a facile one-step hydrothermal method to synthesize nickel-based metal-organic frameworks (MOF) using organic linker 4,4'-biphenyl dicarboxylic acid (BPDC) for high-performance supercapacitors. The pore size of the Ni-BPDC-MOF nanostructure is tuned through different synthesization temperatures. Among them, the sample synthesized at 180 °C exhibits a nanoplate morphology with a specific surface area of 311.99 m2·g-1, a pore size distribution of 1-40 nm and an average diameter of ~29.2 nm. A high specific capacitance of 488 F·g-1 has been obtained at a current density of 1.0 A·g-1 in a 3 M KOH aqueous electrolyte. The electrode shows reliable cycling stability, with 85% retention after 2000 cycles. The hydrothermal process Ni-BPDC-MOF may provide a simple and efficient method to synthesize high-performance hybrid MOF composites for future electrochemical energy storage applications.

3.
Nanomaterials (Basel) ; 11(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803278

RESUMO

We report a novel Ni3S2 carbon coated (denoted as NCC) rod-like structure prepared by a facile one-pot hydrothermal method and employ it as a binder free electrode in supercapacitor. We coated carbon with glucose as carbon source on the surface of samples and investigated the suitable glucose concentration. The as-obtained NCC rod-like structure demonstrated great performance with a huge specific capacity of 657 C g-1 at 1 A g-1, preeminent rate capability of 87.7% retention, the current density varying to 10 A g-1, and great cycling stability of 76.7% of its original value through 3500 cycles, which is superior to the properties of bare Ni3S2. The result presents a facile, general, viable strategy to constructing a high-performance material for the supercapacitor applications.

4.
J Colloid Interface Sci ; 587: 650-660, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33267954

RESUMO

Hydrogen generation through electrochemical water decomposition is a promising method to address the global energy crisis. Herein, we report the synthesis of a series of flower-like Mo3S4/Co1-xS composites on Co foil (Mo3S4/Co1-xS@CF) as high-performance electrochemical water-splitting catalysts in an alkaline environment. The flower-like array structure of Mo3S4/Co1-xS@CF not only increases the electrochemically active surface area of ​​the catalyst, but also facilitates the release of bubbles generated, resulting in enhanced catalytic activity. For the hydrogen evolution reaction, the Mo3S4/Co1-xS@CF electrode exhibits good stability and excellent catalytic activity in 1.0 M KOH (η10 = 105 mV), 1.0 M PBS (η10 = 92 mV) and 0.5 M H2SO4 (η10 = 68 mV) solutions. For the oxygen evolution reaction, the electrode displays excellent stability and catalytic activity in 1.0 M KOH solution (η10 = 215 mV). When used for overall water splitting in 1.0 M KOH solution, Mo3S4/Co1-xS@CF achieves a current density of 10 mA cm-2 at a low potential of 1.58 V and maintains it stably for 40 h. This study presents a simple method for preparing transition metal-based bimetallic composite catalysts for efficient hydrogen production.

5.
ACS Appl Mater Interfaces ; 12(47): 52763-52770, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33171049

RESUMO

NH3 is mainly obtained by the Haber-Bosch method in the process of industrial production, which is not only accompanied by huge energy consumption but also environmental pollution. The reduction of N2 to NH3 under mild conditions is an important breakthrough to solve the current energy and environmental problems, so the preparation of catalysts that can effectively promote the reduction of N2 is a crucial step. In this work, BiVO4 decorated with amorphous MnCO3/C double layers has been successfully synthesized by a one-step method for the first time. The C and MnCO3 have been formed as ultrathin film, which enables the establishment of a uniform and tight interface with BiVO4. The temperature-programmed desorption of N2 (N2-TPD) spectra confirmed that the MnCO3/C could endow BiVO4 with a drastic enhancement of the chemical absorption ability of a N2 molecule compared with the pristine BiVO4. Meanwhile, the method of isotope labeling proved that the catalyst exhibited excellent selectivity for the photocatalytic nitrogen reduction reaction (NRR). The production rate of NH3 up to 2.426 mmol m-2 h-1 has been achieved over the BiVO4/MnCO3/C, which is almost 8 times that of pristine BiVO4. The promoted production rate of NH3 over BiVO4/MnCO3/C could be mainly attributed to the cooperative process between MnCO3 and C amorphous layers. Therefore, this work could provide an alternative insight to understand the NRR process based on the model of a hierarchical amorphous structure.

6.
Nanoscale Res Lett ; 15(1): 109, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409877

RESUMO

The rutile SnxTi1-xO2 (x = 0, 0.33, 0.5, 0.67, 1) solid solution was synthesized by a one-step hydrothermal method, in which tetrabutyl titanate and Tin (IV) chloride pentahydrate were used as raw materials. A series of Ru/SnxTi1-xO2 were then prepared by the impregnation process in RuCl3 to investigate the performance and stability of CO and C3H8 oxidation. These catalysts were characterized through XRD, N2 adsorption-desorption, FT-IR, TEM, XPS, H2-TPR, and O2-TPD techniques. The effect of Sn/Ti molar ratio and hydrothermal condition on the low-temperature catalytic oxidized performance and stability of Ru/SnxTi1-xO2 were investigated. The results indicated that Ru/Sn0.67Ti0.33O2 catalyst showed an excellent activity and stability at low temperatures. The CO conversion reached 50% at 180 °C and 90% at 240 °C. Besides, the C3H8 conversion reached 50% at 320 °C, the complete conversion of C3H8 realized at 500 °C, and no deactivation occurs after 12 h of catalytic reaction. The excellent low-temperature activity and stability of the Ru/Sn0.67Ti0.33O2 were attributed to the following factors. Firstly, XRD results showed that Sn4+ was successfully introduced into the lattice of TiO2 to replace Ti4+ forming a homogeneous solid solution (containing -Sn4+-O-Ti4+- species), which was consistent with TEM and N2 adsorption-desorption results. The introduction of Sn could suppress the growth of anatase crystal and promote the formation of rutile phase, and this phase transition was helpful to improve the low-temperature activity of the catalysts. Secondly, TEM images showed that ultrafine Ru nanoparticles (~ 5 nm) were dispersed on Sn0.67Ti0.33O2 support, suggesting that the formation of SnxTi1-xO2 solid solution was beneficial to the dispersion of Ru particles.

7.
ACS Appl Bio Mater ; 3(10): 7095-7102, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019369

RESUMO

Discovering efficient antibacterial materials is crucial in the area of increasing drug resistance. Herein, we synthesized carbon dots (C-dots) with superior antibacterial activity through a simple one-step hydrothermal method. In this method, p-phenylenediamine serves as not only the carbon source but also the origin for the functional group anchored on the obtained C-dots. The antibacterial activity of the obtained C-dots was tested against Staphylococcus aureus and Escherichia coli. The minimum bactericidal concentrations of the synthesized C-dots against S. aureus and E. coli were 2 and 30 µg/mL, respectively, which are lower than that of previously reported C-dots. The antibacterial mechanism was investigated, and the results indicated that a large number of -NH3+ groups on the C-dots' surface enhanced their antibacterial activity. Besides, the C-dots exhibited negligible cytotoxicity.

8.
Bioresour Technol ; 278: 242-247, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708326

RESUMO

This study aimed to produce an industrial waste-based novel magnetic nanocomposite (Fe@GPHC) by a facile and one-step hydrothermal carbonization (HTC) method. In order to characterize of Fe@GPHC, X-ray fluorescence spectroscopy (XRF), Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), Vibrating-sample magnetometer (VSM), and elemental (ultimate) analyses were applied. Characterization results showed that during the HTC process, the Fe nanoparticles (FeNPs) were successfully incorporated on biowaste matrix. In addition, the Fe@GPHC was used to test its adsorptive property. For this, methylene blue (MB) and methyl orange (MO) were selected as a simulated pollutant. A batch method was used to perform the adsorption experiments. The maximum adsorption capacity of Fe@GPHC was 11 mg g-1 and 8.9 mg g-1 for MB and MO, respectively. This study provides a feasible and simple approach to design and synthesis of high-performance functional magnetic material in a cost-effective way.


Assuntos
Nanocompostos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Compostos Azo/isolamento & purificação , Magnetismo , Azul de Metileno/isolamento & purificação
9.
J Environ Sci (China) ; 65: 347-355, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548406

RESUMO

CdS/MoS2, an extremely efficient photocatalyst, has been extensively used in hydrogen photoproduction and pollutant degradation. CdS/MoS2 can be synthesized by a facile one-step hydrothermal process. However, the effect of the sulfur source on the synthesis of CdS/MoS2via one-step hydrothermal methods has seldom been investigated. We report herein a series of one-step hydrothermal preparations of CdS/MoS2 using three different sulfur sources: thioacetamide, l-cysteine, and thiourea. The results revealed that the sulfur source strongly affected the crystallization, morphology, elemental composition and ultraviolet (UV)-visible-light-absorption ability of the CdS/MoS2. Among the investigated sulfur sources, thioacetamide provided the highest visible-light absorption ability for CdS/MoS2, with the smallest average particle size and largest surface area, resulting in the highest efficiency in Methylene Blue (MB) degradation. The photocatalytic activity of CdS/MoS2 synthesized from the three sulfur sources can be arranged in the following order: thioacetamide>l-cysteine>thiourea. The reaction rate constants (k) for thioacetamide, l-cysteine, and thiourea were estimated to be 0.0197, 0.0140, and 0.0084min-1, respectively. However, thioacetamide may be limited in practical application in terms of its price and toxicity, while l-cysteine is relatively economical, less toxic and exhibited good photocatalytic degradation performance toward MB.


Assuntos
Compostos de Cádmio/química , Modelos Químicos , Processos Fotoquímicos , Enxofre/química , Catálise , Luz , Azul de Metileno , Sulfetos/química
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-617626

RESUMO

A ball milling method which is green with simple-manipulation and low-cost was used to prepare graphene as precursor for graphene quantum dots (GQDs) synthesis.Subsequently, GQDs with good dispersibility, uniform size distribution, average diameter of (4.80 ± 0.20) nm and 1-3 layers were prepared by one-step hydrothermal method.The morphology, structure and optical properties of the GQDs were characterized by high-resolution transmission electron microscopy (HRTEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV-Vis absorption and fluorescence spectroscopy.Furthermore, the GQDs were used in label-free and specific detection of ferric ion (Fe.3+) with broad linear ranges of 2.0×10.-6-7.0×10.-4 mol/L and low detection limit of 1.8 × 10.6 mol/L (S/N=3).The possible mechanism was also discussed and the application of GQDs for Fe.3+ detection in tap water was demonstrated.Finally, based on their low cytotoxicity and excellent biocompatibility, the as-prepared GQDs were successfully applied to efficient cell imaging.This work provides a new way for preparation of carbon-based nanomaterials and build a foundation for deepening applications of GQDs in bio-/chem-analysis, bioimaging, etc.

11.
Small ; 12(28): 3849-60, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27283881

RESUMO

A one-step multipurpose strategy is developed to realize a sophisticated design that simultaneously integrates three desirable components of nitrogen dopant, 3D graphene, and 1D mesoporous metal oxide nanowires into one hybrid material. This facile synthetic strategy includes a one-step hydrothermal reaction followed by topotactic calcination. The utilization of urea as the starting reagent enables the precipitation of precursor nanowires and concurrent doping of nitrogen heteroatoms on graphene during hydrothermal reaction, while at the same time the graphene nanosheets are self-assembled to afford a 3D scaffold. Detailed characterizations on the final calcined product are conducted to confirm the phase purity, porosity, nitrogen composition, and morphology. The integration of two building blocks, i.e., flexible graphene nanosheets and Co3 O4 nanowires, enables various intertwining behaviors such as seaming, bridging, hooping, bundling, and sandwiching, of which synergistic effect substantially enhances electrical and electrochemical properties of the resultant hybrid. For lithium ion battery application of the hybrid, a remarkably high capacity more than 1200 mA h g(-1) (at 100 mA g(-1) ) is stabilized over 100 cycles with coulombic efficiency higher than 97%. Even during rapid discharge/charge processes (1000 mA g(-1) ), a reversible charge capacity of 812 mA h g(-1) is still retained after 230 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA