Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
ACS Appl Mater Interfaces ; 16(38): 51150-51162, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269660

RESUMO

Integrating light emitters based on III-V materials with silicon-based electronics is crucial for further increase in data transfer rates in communication systems since the indirect bandgap of silicon prevents its direct use as a light source. We investigate here InAs/InGaAlAs quantum dot (QD) structures grown directly on 5° off-cut Si substrate and emitting light at 1.5 µm, compatible with established telecom platform. Using different dislocation defect filtering layers, exploiting strained superlattices, and supplementary QD layers, we mitigate the effects of lattice constant and thermal expansion mismatches between III-V materials and Si during growth. Complementary optical spectroscopy techniques, i.e. photoreflectance and temperature-, time- and polarization-resolved photoluminescence, allow us to determine the optical quality and application potential of the obtained structures by comparing them to a reference sample-state-of-the-art QDs grown on InP. Experimental findings are supported by calculations of excitonic states and optical transitions by combining multiband k•p and configuration-interaction methods. We show that our design of structures prevents the generation of a considerable density of defects, as intended. The emission of Si-based structures appears to be much broader than for the reference dots, due to the creation of different QD populations which might be a disadvantage in particular laser applications, however, could be favorable for others, e.g., in broadly tunable devices, sensors, or optical amplifiers. Eventually, we identify the overall most promising combination of defect filtering layers and discuss its advantages and limitations and prospects for further improvements.

2.
J Sci Food Agric ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132989

RESUMO

Raman spectroscopy, a fast, non-invasive, and label-free optical technique, has significantly advanced plant and food studies and precision agriculture by providing detailed molecular insights into biological tissues. Utilizing the Raman scattering effect generates unique spectral fingerprints that comprehensively analyze tissue composition, concentration, and molecular structure. These fingerprints are obtained without chemical additives or extensive sample preparation, making Raman spectroscopy particularly suitable for in-field applications. Technological enhancements such as surface-enhanced Raman scattering, Fourier-transform-Raman spectroscopy, and chemometrics have increased Raman spectroscopy sensitivity and precision. These and other advancements enable real-time monitoring of compound translocation within plants and improve the detection of chemical and biological contaminants, essential for food safety and crop optimization. Integrating Raman spectroscopy into agronomic practices is transformative and marks a shift toward more sustainable farming activities. It assesses crop quality - as well as the quality of the food that originated from crop production - early plant stress detection and supports targeted breeding programs. Advanced data processing techniques and machine learning integration efficiently handle complex spectral data, providing a dynamic and detailed view of food conditions and plant health under varying environmental and biological stresses. As global agriculture faces the dual challenges of increasing productivity and sustainability, Raman spectroscopy stands out as an indispensable tool, enhancing farming practices' precision, food safety, and environmental compatibility. This review is intended to select and briefly comment on outstanding literature to give researchers, students, and consultants a reference for works of literature in Raman spectroscopy mainly focused on plant, food, and agronomic sciences. © 2024 Society of Chemical Industry.

3.
Cancers (Basel) ; 16(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001546

RESUMO

Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.

4.
Luminescence ; 39(7): e4832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031322

RESUMO

The aim of this research is to investigate novel compositions of oxyfluoride glasses doped with Neodymium (Nd3+) rare earth ions in the visible spectrum. This area has not been extensively studied in the existing literature, so it is vital to understand the favorable photoluminescence characteristics within this part of the electromagnetic spectrum. Therefore, we synthesized and characterized SiO2-PbO-PbF2 (SPF) doped with 1% neodymium (Nd3+) ions glasses. Spectroscopic analyses, based on Judd-Ofelt theory, were conducted on absorption spectra. These analyses enabled to determine absorption cross-sections, transition probabilities, and Judd-Ofelt intensity parameters Ω2, Ω4, and Ω6 for the different transition. Additionally, we calculated various radiative properties, such as branching ratios, integrated cross-sections, radiative lifetimes, emission cross-section, optical gain, and the multicolor behavior (chromaticity coordinates, CIE diagram) under different excitation wavelengths. The results suggest promising prospects for using these oxyfluoride silicate glasses doped with Nd3+ as a fluorophore, potentially for lasing materials around 630-nm emission and in other photonic applications.


Assuntos
Vidro , Neodímio , Silicatos , Dióxido de Silício , Neodímio/química , Vidro/química , Silicatos/química , Dióxido de Silício/química , Fluoretos/química , Chumbo/química , Óxidos/química , Fenômenos Ópticos , Luminescência , Cor
5.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930954

RESUMO

The organic molecules adsorbed on antiferromagnetic surfaces can produce interesting interface states, characterized by charge transfer mechanisms, hybridization of molecular-substrate orbitals, as well as magnetic couplings. Here, we apply an ab initio approach to study the adsorption of Fe phthalocyanine on stoichiometric Cr2O3(0001). The molecule binds via a bidentate configuration forming bonds between two opposite imide N atoms and two protruding Cr ones, making this preferred over the various possible adsorption structures. In addition to the local modifications at these sites, the electronic structure of the molecule is weakly influenced. The magnetic structure of the surface Cr atoms shows a moderate influence of molecule adsorption, not limited to the atoms in the close proximity of the molecule. Upon optical excitation at the onset, electron density moves toward the molecule, enhancing the ground state charge transfer. We investigate this movement of charge as a mechanism at the base of light-induced modifications of the magnetic structure at the interface.

6.
Environ Sci Technol ; 58(25): 11084-11095, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860676

RESUMO

Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present in situ, fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor. We aggregated mobile data at 500 m spatial resolution and reported average mixing ratios for 75 km of the corridor. Mean and median aggregated values were 31.4 and 23.3 ppt, respectively, and a majority (75%) of 500 m grid cells were above 10.9 ppt, the lifetime exposure concentration corresponding to 100-in-one million excess cancer risk (1 × 10-4). A small subset (3.3%) were above 109 ppt (1000-in-one million cancer risk, 1 × 10-3); these tended to be near EtO-emitting facilities, though we observed plumes over 10 km from the nearest facilities. Many plumes were highly correlated with other measured gases, indicating potential emission sources, and a subset was measured simultaneously with a second commercial analyzer, showing good agreement. We estimated EtO for 13 census tracts, all of which were higher than EPA estimates (median difference of 21.3 ppt). Our findings provide important information about EtO concentrations and potential exposure risks in a key industrial region and advance the application of EtO analytical methods for ambient sampling and mobile monitoring for air toxics.


Assuntos
Monitoramento Ambiental , Óxido de Etileno , Louisiana , Monitoramento Ambiental/métodos , Humanos , Poluentes Atmosféricos/análise
7.
Annu Rev Phys Chem ; 75(1): 509-534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941525

RESUMO

The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.

8.
Annu Rev Phys Chem ; 75(1): 457-481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941530

RESUMO

Reaction intermediates buried within a solid-liquid interface are difficult targets for physiochemical measurements. They are inherently molecular and locally dynamic, while their surroundings are extended by a periodic lattice on one side and the solvent dielectric on the other. Challenges compound on a metal-oxide surface of varied sites and especially so at its aqueous interface of many prominent reactions. Recently, phenomenological theory coupled with optical spectroscopy has become a more prominent tool for isolating the intermediates and their molecular dynamics. The following article reviews three examples of the SrTiO3-aqueous interface subject to the oxygen evolution from water: reaction-dependent component analyses of time-resolved intermediates, a Fano resonance of a mode at the metal-oxide-water interface, and reaction isotherms of metastable intermediates. The phenomenology uses parameters to encase what is unknown at a microscopic level to then circumscribe the clear and macroscopically tuned trends seen in the spectroscopic data.

9.
Colloids Surf B Biointerfaces ; 241: 114013, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38865867

RESUMO

Nanoparticles are produced in natural phenomena or synthesized artificially for technological applications. Their frequent contact with humans has been judged potentially harmful for health, and numerous studies are ongoing to understand the mechanisms of the toxicity of nanoparticles. At the macroscopic level, the toxicity can be established in vitro or in vivo by measuring the survival of cells. At the sub-microscopic level, scientists want to unveil the molecular mechanisms of the first interactions of nanoparticles with cells via the cell membrane, before the toxicity cascades within the whole cell. Unveiling a molecular understanding of the nanoparticle-membrane interface is a tricky challenge, because of the chemical complexity of this system and its nanosized dimensions buried within bulk macroscopic environments. In this review, we highlight how, in the last 10 years, second-order nonlinear optical (NLO) spectroscopy, and specifically vibrational sum frequency generation (SFG), has provided a new understanding of the structural, physicochemical, and dynamic properties of these biological interfaces, with molecular sensitivity. We will show how the intrinsic interfacial sensitivity of second-order NLO and the chemical information of vibrational SFG spectroscopy have revealed new knowledge of the molecular mechanisms that drive nanoparticles to interact with cell membranes, from both sides, the nanoparticles and the membrane properties.


Assuntos
Nanopartículas , Vibração , Nanopartículas/química , Análise Espectral/métodos , Humanos , Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Propriedades de Superfície , Bicamadas Lipídicas/química
10.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826808

RESUMO

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.


Assuntos
Circulação Cerebrovascular , Desenho de Equipamento , Análise Espectral , Humanos , Circulação Cerebrovascular/fisiologia , Análise Espectral/instrumentação , Análise Custo-Benefício , Reprodutibilidade dos Testes , Dispositivos Eletrônicos Vestíveis , Razão Sinal-Ruído , Lasers , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Contraste de Manchas a Laser/instrumentação
11.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793986

RESUMO

In this paper, a dispersion of glass beads of different sizes in an ammonium nitrate solution is investigated with the aid of Raman spectroscopy. The signal losses caused by the dispersion are quantified by an additional scattered light measurement and used to correct the measured ammonium nitrate concentration. Each individual glass bead represents an interface at which the excitation laser is deflected from its direction causing distortion in the received Raman signal. It is shown that the scattering losses measured with the scattered light probe correlate with the loss of the Raman signal, which means that the data obtained can be used to correct the measured values. The resulting correction function considers different particle sizes in the range of 2-99 µm as well as ammonium nitrate concentrations of 0-20 wt% and delivers an RMSEP of 1.952 wt%. This correction provides easier process access to dispersions that were previously difficult or impossible to measure.

12.
Cureus ; 16(3): e56047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606243

RESUMO

Basal cell carcinoma (BCC) is a common skin cancer that occurs due to various genetic and environmental factors. Diagnosis is made by a combination of clinical appearance, biopsy, imaging, and histopathological analysis. This review describes the current array of imaging modalities available to physicians to aid in the diagnosis of BCC. It is important to stay up-to-date with improvements in diagnostic screening, and knowledge of these options is instrumental in providing the best care to patients. Embase, Medline Industries, and PubMed were searched for articles within the past 10 years based on a search query that looked for imaging modalities used in the diagnosis and evaluation of a variety of dermatologic conditions. The search was further refined to focus on BCC and satisfy the inclusion/exclusion criteria determined by the authors. The research process was detailed in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram. Dermoscopy is a non-invasive in vivo microscopic technique used to evaluate skin lesions. Features of dermoscopy cannot be visualized with the naked eye, and studies found that dermoscopy increased diagnostic accuracy. Reflectance confocal microscopy (RCM) examines skin morphology, and recent studies found that 100% of patients with BCC had tumor-free margins when diagnosed with RCM. It allows for a one-stop-shop for diagnosis. Optical spectroscopy samples multiple sites without removing tissue. It helps detect subtle biophysical differences, allowing for earlier diagnosis. High-frequency ultrasound (HFUS) helps determine tumor size, structure, depth of invasion and spread. Studies found statistically significant positive correlations between depth of spread and HFUS readings. Optical coherence tomography takes cross-sectional images to analyze histopathology and morphology. It produces high-resolution images, confers slightly more accurate results than a biopsy, and expedites the treatment process through an earlier diagnosis without a biopsy.These results will advance the fields of dermatology and radiology as they describe unique uses for these imaging modalities. There are a variety of ways to use microscopy, and these techniques may be applied to many different lesions and help revolutionize the diagnosis and treatment of skin cancer and other lesions without the need for multiple, sometimes disfiguring surgical procedures. With the increase in diagnostic accuracy and decrease in diagnosis time, advanced imaging studies will become an integral part of dermatologic diagnosis and be included in future management and treatment plans, especially in the case of BCC.

13.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612659

RESUMO

Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/genética , Dicroísmo Circular , Transferência de Energia , Temperatura Baixa
14.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673179

RESUMO

Copper-based alloys designed to combine high electronic and thermal conductivities with high mechanical strength find a wide range of applications in different fields. Among the principal representatives, strongly diluted CuAg alloys are of particular interest as innovative materials for the realization of accelerating structures when the use of high-gradient fields requires increasingly high mechanical and thermal performances to overcome the limitations induced by breakdown phenomena. This work reports the production and optical characterization of CuAg crystals at low Ag concentrations, from 0.028% wt to 0.1% wt, which guarantee solid solution hardening while preserving the exceptional conductivity of Cu. By means of Fourier Transform Infrared (FTIR) micro-spectroscopy experiments, the low-energy electrodynamics of the alloys are compared with that of pure Cu, highlighting the complete indistinguishability in terms of electronic transport for such low concentrations. The optical data are further supported by Raman micro-spectroscopy and SEM microscopy analyses, allowing the demonstration of the full homogeneity and complete solubility of solid Ag in copper at those concentrations. Together with the solid solution hardening deriving from the alloying process, these results support the advantage of strongly diluted CuAg alloys over conventional materials for their application in particle accelerators.

15.
J Phys Condens Matter ; 36(31)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653256

RESUMO

The effects of ion exchange time and temperature on the optical properties and plasmonic response of silver ion exchanged soda-lime silicate glass were investigated using scanning electron microscopy (SEM) in energy dispersive spectrometry (EDS) configuration, m-lines spectroscopy, photoluminescence (PL) spectroscopy, and UV-visible absorption spectroscopy. SEM analyses in EDS mode provided profiles of silver oxide molar concentration. These profiles were directly correlated to the silver diffusion coefficient using an adjustment procedure. The effective indices of ion exchanged glasses measured by the standard prism coupling technique (m-lines) allowed access to refractive index distributions in ion exchange regions. These ion-exchanged glasses underwent evaluation to determine their potential suitability for use in multimode planar systems. The PL results acquired after ion exchange demonstrated that the creation of Ag0atoms from Ag+ions was responsible for the decline and quenching of PL intensity at ion exchange times and temperatures increase. Silver nanoparticles were generated in the samples subjected to ion exchange at 480 °C without the need for post-exchange treatments. The emergence of the surface plasmon resonance band around 427 nm in the optical absorption spectra confirmed the formation of Ag nanoparticles in annealed glasses. Estimates of the UV-visible absorption spectra indicated an average size of silver nanoparticles ranging from 1.8 to 2.4 nm.

16.
Photodiagnosis Photodyn Ther ; 46: 104051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513810

RESUMO

The optical fluorescence method is distinguished by key features such as non-invasiveness, high sensitivity, and resolution, which are superior to traditional diagnostic approaches. Unlike histopathological examinations and biochemical analyses, optical diagnostic methods obviate the need for tissue sampling, enabling the analysis of virtually unlimited material. The research aims to examine the effectiveness of emission spectra analysis in the diagnosis of basal cell carcinoma (BCC) of the scalp and neck. The analysis was based on data provided by Specialized Hospital No. 2 in Bytom comprising a study sample of 10 patients. For each patient, fluorescence emission spectra were recorded from each of 512 points along a 5 mm line. The results obtained from the histopathological examination, the analysis and morphological evaluation of the tissue, and the diagnosis through microscopic observation were used to define a dichotomous variable (presence or absence of a cancerous lesion), adopted in the study as the modeled variable. The next step of the presented study involved constructing a logistic regression model for identifying cancerous lesions depending on the biochemical indicator's relative fluorescence value (RFV) and emission wavelength (ELW) within the 620 nm to 730 nm range. This wavelength range is often used in fluorescence diagnostics to detect various pathologies, including cancerous lesions. The resulting binary logistic regression model, logit(p)=-33.17+0.04ELW+0.01RFV, indicates a statistically significant relationship between wavelength and relative fluorescence values with the probability of detecting cancer. The estimated model exhibits a good fit and high predictive accuracy. The overall model accuracy is 84.8 %, with the correct classification rates at approximately 96 % for healthy individuals and 74 % for individuals with cancer. These findings underscore the potential of photodynamic diagnostics in cancer detection and monitoring.


Assuntos
Carcinoma Basocelular , Neoplasias de Cabeça e Pescoço , Neoplasias Cutâneas , Espectrometria de Fluorescência , Humanos , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/patologia , Neoplasias de Cabeça e Pescoço/diagnóstico , Espectrometria de Fluorescência/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Modelos Logísticos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Idoso de 80 Anos ou mais
17.
J Biomed Opt ; 29(3): 037002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476219

RESUMO

Significance: Shuntodynia is patient reported pain at the site of the implanted ventriculoperitoneal (VP) shunt. Pediatric hydrocephalus requiring shunt placement is a chronic and prevalent standard of care treatment and requires lifetime management. Shuntodynia is a subjective measure of shunt dysfunction. Quantitative, white-light tissue spectroscopy could be used to objectively identify this condition in the clinic. Aim: Pediatric subjects were recruited for optical sensing during routine clinical follow-up visits, post-VP shunt implantations. Acquired optical signals were translated into skin-hemodynamic signatures and were compared between subjects that reported shuntodynia versus those that did not. Approach: Diffuse reflectance spectroscopy (DRS) measurements were collected between 450 and 700 nm using a single-channel fiber-optical probe from (N=35) patients. Multiple reflectance spectra were obtained by the attending physician from regions both proximal and distal to the VP shunt sites and from a matched contralateral site for each subject. Acquired reflectance spectra were processed quantitatively into functional tissue optical endpoints. A two-way, repeated measures analysis of variance was used to assess whether and which of the optical variables were statistically separable, across subjects with shuntodynia versus those without. Results: Analyses indicated that intrapatient differences in vascular oxygen saturation measured between shunt sites relative to that obtained at the scar or contralateral sites was significantly lower in the pain group. We also find that the total hemoglobin concentrations at the shunt site were lowest relative to the other sites for subjects reporting pain. These findings suggest that shuntodynia pain arises in the scalp tissue around the implanted shunts and may be caused due to hypoxia and inflammation. Conclusions: Optically derived hemodynamic variables were statistically significantly different in subjects presenting with shuntodynia relative to those without. DRS could provide a viable mode in routine bedside monitoring of subjects with VP shunts for clinical management and assessment of shuntodynia.


Assuntos
Hidrocefalia , Derivação Ventriculoperitoneal , Humanos , Criança , Estudos Retrospectivos , Derivação Ventriculoperitoneal/efeitos adversos , Análise Espectral , Dor/complicações
18.
Eur J Med Res ; 29(1): 193, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528571

RESUMO

BACKGROUND: Hyperspectral techniques have aroused great interest in non-invasively measuring periodontal tissue hemodynamics. However, current studies mainly focused on three typical inflammation stages (healthy, gingivitis and periodontitis) and practical approaches for using optical spectroscopy for early and precisely detection of periodontal inflammation at finer disease stages have not been well studied. METHODS: This study provided novel spectroscopic insights into periodontitis at different stages of disease, and developed six simple but physically meaning hemodynamic spectral indices (HSIs) including four spectral absorption depths of oxyhemoglobin ( D HbO 2 ), deoxyhemoglobin ( D Hb ), total hemoglobin ( t Hb ) and tissue water ( D water ), and two normalized difference indices of oxyhemoglobin( N D HbO 2 I ) and deoxyhemoglobin ( N D Hb I ) from continuum-removal spectra (400-1700 nm) of periodontal tissue collected from 47 systemically healthy subjects over different severities from healthy, gingivitis, slight, moderate to severe periodontitis for early and precision diagnostics of periodontitis. Typical statistical analyses were conducted to explore the effectiveness of the proposed HSIs. RESULTS: D Hb and t Hb exerted significant increasing trends as inflammation progressed, whereas D HbO 2 exhibited significant difference (P < 0.05) from the healthy sites only at moderate and severe periodontitis and D water presented unstable sensitives to disease severity. By contrast, N D HbO 2 I and N D Hb I showed more steadily downward trends as severity increased, and demonstrated the highest correlations with clinical gold standard parameters. Particularly, the proposed normalized HSIs ( N D HbO 2 I and N D Hb I ) yielded high correlations of - 0.49 and - 0.44 with probing depth, respectively, far outperforming results achieved by previous studies. The performances of the HSIs were also confirmed using the periodontal therapy group. CONCLUSIONS: These results indicated great potentials of combination optical spectroscopy and smart devices to non-invasively probe periodontitis at earlier stages using the simple and practical HSIs. Trial registration This study was retrospectively registered in the Chinese Clinical Trial Registry on October 24, 2021, and the clinical registration number is ChiCTR2100052306.


Assuntos
Gengivite , Periodontite , Humanos , Oxiemoglobinas/análise , Periodontite/diagnóstico , Gengivite/diagnóstico , Inflamação/diagnóstico , Água , Hemodinâmica
19.
Heliyon ; 10(5): e27136, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463763

RESUMO

Proper application of a fertilizer requires precise knowledge of its nutrient composition. In the case of liquid organic manures (LOM), this information is often lacking due to heterogeneous nature of these fertilizers. Published "book values" of nutrient contents present the average from a wide range of possible nutrient characteristics, but usually differ considerably from the concentration in a particular manure. Thus, chemical analyses are recommended before applying the specific LOM. Unfortunately, this is usually too costly and time-intensive in practical farming. On-farm analysis by optical spectrometry in the visible and near-infrared (Vis-NIR) range is considered as an efficient alternative. However, calibration of Vis-NIR spectrometry for LOM is challenging as shown in many studies. One reason is LOMs' tendency to rapidly segregate into a fuzzy continuum with liquid and solid properties. By separating LOM into well-defined liquid and solid phases and measuring them separately, calibration of Vis-NIR spectrometry might be improved. In this study, the effects of four sample pre-treatment techniques on the prediction accuracy of macronutrients (N, P, K, Mg, Ca, S), micronutrients (B, Mn, Fe, Cu, Zn), dry matter and pH of LOM using visible and near infrared spectrometry were comprehensively investigated. The concentrations were referred either to wet basis or to dry matter basis. For the study, a total of 163 samples, separated in two similar LOM sets (pig, cattle, digestates), were either dried, filtered, or centrifuged and always compared to non-treated samples. The experiments demonstrate that in comparison to raw samples (Ø r2 = 0.85) neither filtering (Ø r2 = 0.76 for filtrates and Ø r2 = 0.71 for filter residues), centrifugation (Ø r2 = 0.59 for supernatants and Ø r2 = 0.79 for pellets), nor drying (Ø r2 = 0.74) revealed to be a helpful preparation step significantly improving prediction results, independent from referring to wet or dry basis concentrations.

20.
ACS Nano ; 18(13): 9557-9565, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38437629

RESUMO

The nature of enhanced photoemission in disordered and amorphous solids is an intriguing question. A point in case is light emission in porous and nanostructured silicon, a phenomenon that is still not fully understood. In this work, we study structural photoemission in heterogeneous cross-linked silicon glass, a material that represents an intermediate state between the amorphous and crystalline phases, characterized by a narrow distribution of structure sizes. This model system shows a clear dependence of photoemission on size and disorder across a broad range of energies. While phonon-assisted indirect optical transitions are insufficient to describe observable emissions, our experiments suggest these can be understood through electronic Raman scattering instead. This phenomenon, which is not commonly observed in crystalline semiconductors, is driven by structural disorder. We attribute photoemission in this disordered system to the presence of an excess electron density of states within the forbidden gap (Urbach bridge) where electrons occupy trapped states. Transitions from gap states to the conduction band are facilitated through electron-photon momentum matching, which resembles Compton scattering but is observed for visible light and driven by the enhanced momentum of a photon confined within the nanostructured domains. We interpret the light emission in structured silicon glass as resulting from electronic Raman scattering. These findings emphasize the role of photon momentum in the optical response of solids that display disorder on the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA